A257 227 |
Wt | (72)

PROCEEDINGS OF THE CONFERENCE ON
MOMENTS AND SIGNAL PROCESSING
(March 1992)

Edited by
Peter Purdue
Herbert Solomon

TECHNICAL REPORT No. 459
SEPTEMBER 21, 1992

Prepared Under Contract
NO00014-92-J-1264 (INR-042-267)
FOR THE OFFICE OF NAVAL RESEARCH

Reproduc‘ion in whole or in part is permitted

~ for any purpose of the United States Government.
Approved for public release; distribution unlimited

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA $4305-4065 BEST

AVAILABLE COPY

G2- 2846°
IRV




PROCEEDINGS OF THE CONFERENCE ON
MOMENTS AND SIGNAL PROCESSING
(March 1992)

;oo
Edited by o
Peter Purdue, Professor @ 77 '
U.S. Naval Postgraduate School, Monterey, CA
and
H=rbert Solomon, Professor Accesion For
Stanford University, Stanford. CA ‘D“'T:; ?:;5'
Unannounced
Justficeton
TECHNICAL REPORT No. 459 ay
SEPTEMBER 21, 1992 D stivanig: f co
| Avaions s
{—wi S Lo
Prepared Under Contract AR R R
N00014-92-J-1264 (NR-042-267) 4| ; ;
FOR THE OFFICE OF NAVAL RESEARCH i :

— . . el

Professor Herbert Solomon, Projzct Director

Reproduction in whole or in part is permitted

for any purpose of the United States Government.

Approved for public release; distribution unlimited

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4065




CONTENTS
InErodUCEION. . ..t e e e e e e e 1
Adaptive Blind Equalization........ .. ...t iennneeeenennn 2
Y. Chen and C.L. Nikias
Moments, Cumulants, and Applications to.................... 108
Stationary Random Processes
D.R. Brillinger
Moment - Based Oscillation Properties of............... . ..... 127
Mixture Models
B. Lindsay and K. Roeder
Probability and Moment Calculations for.................... 141
Elliptically Contoured Distributions
S. Iyengar
Model Discrimination using Higher Order Moments............ 167
D. Guy and K-S Lii
Moments in Statistics: BApproximations to.................. 218

Densities and Goodness-0Of-Fit
M.A. Stephens

Recent Applications of Higher Order Statistics............. 233
to Speech and Array Processing
M.C. Dogan and J.M.Mendel

Moments and Wavelets in Signal Estimation.................. 270
E.J. Wegman and H.T. Le

Conference Program. ... ...ttt eineenneenoeeeeesnesaneanensas 295

ii




I recent years, moments and their uses have been investigated by mathematicians,
statisticians, aud engineers. In 1937, the Anerican Mathematical Society sponsored o short
course on “NMoments in Mathematies™ at its meeting in San Autonio, Texas, This led to
a volume containing the six papers delivered there. The volume wias published by thie
Society in its Short Course Series as Volume 37 in its Procecdings of Symposia tn Applicd
Mathematics.

Recently, Dr. James Maar of the National Security Agencey noted @ munber of
problems i signal processing i which moments of distributions were inportant and yer
statisticlans and signal processor scientists were unaware of what had been accomplishied
by each other. He initiated discussions with Professor Peter Purdue of the Operations
Research Department of the Naval Postgraduate School and Professor Herbert Solomon of
the Statistics Department at Stanford University about developing a conference in which
moments and signal processing and their interaction would be featured. Professor Purdue
and Professor Solomon agreed to explore this idea and they developed and co-chadred
Conference on Moments and Signal Processing which was Lield at the Naval Postgraduate
School on March 30-31, 1992, The Proceedings herein resulted from that confercuce.

The Conference developed around eight speakers whose interests include mwoments
and statistics, signal processing. aud interactions between the two. Professors Jerry Mendel
and Max Nikias came from the signal processing community; Professors Satish Iyengar and
AMichael Stephens came from the statistical community. The remaining four, Professors
David Brillinger, Ken-Shin Lii. Bruce Lindsay, and Ed Wegman, came at the subject in
different shadings emanating from the central core of the Conference.

The Conference was supported substantively by the National Sccurity Agency
and partially by the Otlee of Naval Rescarch, Many thanks are due to these agencies. A
number of government seientists from the Department of Defense and a lmited number of
general community attendees participated in the Conference. This led to a lively audicnce
of 40 to 30 participants over t7e two day period,

[t is hoped that the wi le availability of the papers in this report will len ! o more

commmunication between the two communities and of course within cach group.
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ABSTRACT

This tutorial paper is focused on two topics, namely: (1) to deseribe system-
atic methodologies for selecting nonlinear transformations for blind equal-
ization algorithms {and thus new types of cumulants), and (i) to give an
overview of the existing blind equalization algorithms and point out their
strengths as well as weaknesses. It is sllown i this paper that all blind
equalization algorithms belong in one of the following three categories, de-
pending where the nounlinear transformation is being applied on the data:
(i} the Bussgang algorithms, where the nonlinearity is in the output of the
adaptive equalization filter; (ii) the polyspectra (or Higher-Order Spectra)
algorithms, where the nonlinearity is in the inpat of the adaptive equal-
ization filter; and (iii) the algorithms where the nonlinearity is inside the
adaptive filter, w.e., the nonlinear filter or neural network. We describe
methodologies for selecting nonlinear transformations based on various op-
timality criteria such as MSE or MAP. We illustrate that such existing al-
gorithms as Saio. Benveniste-Goursat, Godard or CMA, Stop-and-Go and
Donoho are indeed special cases of the Bussgang family of techniques when
the nonlinearity is memoryless. We present results that demonstrate the
pelyspectra-based algorithms exhibit faster convergence rate than Bussgang
algorithms. However, this improved performance is at the expense of more
computations per iteration. We also show that blind equalizers based on
nonlinear filters or neural networks are more suited for channels that have
nonlinear distortions,

The Godard or CMA algorithm is probably the most widely used blind
equalizer in digital communications today due to its simplicity, low complex-
ity and constant modulus property. Its main drawbacks, however, are slow
convergence and no guarantee for global convergence starting from arbitrary
initial guess. We present a new method for blind equalization, the CRIMNO
algorithm (i.e., criterion with memory nonlinearity), which is shown to have
the same advantages as Godard (simplicity, low complexity, constant modu-
lus property) and yet guaranteeing much faster convergence. The CRIMNO
algorithm is flexible enough to address blind deconvolution problems when
the input sequence is colored.




1 INTRODUCTION

Blind deconvolution or equalization is a signal processing procedure that recovers the input
sequence applied to a linear time-invariant nonminimum phase system from its output only.
Blind equalization algorithms are essentially adaptive filtering algorithms designed in such a way
thal they do not need the external supply oI a desired response to generate the error signal in
the output of the adaptive filter. In other words, the adaptive algorithm is “blind” to the desired
response. However, the algorithm itsclf generates the desired response by applying a nonlinear
transformation on sequences involved in the adaptation process. All blind equalization algorithms
belong to one of the following three categories, depending where the nonlinear transformation is

being applied on the data:

e The Bussgang algorithms, where the nonlinearity is in the output of the adaptive equal-

ization filter;

o The Polyspectra (or Higher-Order Spectra) algorithms, where the nonlinearity is in the

input of the adaptive equalization filter;

e The algorithms where the nonlinearity is inside the adaptive filter; 1.e., the filter is non-

linear (e.g. Volterra) or neural network.

The purpose of this paper is to provide an overview of the existing blind equalization algo-
rithms and to discuss their advantages and limitations. Conventional equalization and carrier
recovery techniques used in multilevel digital communication systems nsually require an initial
training period, during which 2 known data sequence (i.e., training sequence) is transmitted [43],
[45]. An alternative effective approach to this problem is to utilize blind equalizers which do not

require any known training sequence during the startup period.




The paper describes systematic methodologices for selecting the nonlinearity based ou various
optimality criteria. such as maximum likelihood (ML), mean-square error (MSE}J or maximum
a posteriori (MAP). As an example, it is illustrated that such existing algorithms as Sato [16],
[47] Benveniste-Goursat [5], [6] Godard or CMA [22], [50] and Stop-and-Go [11] are indeed spe-
cial cases of the family of Bussgang techniques where the nonlinearity is memoryless [3], [4]. Tt
is demonstrated that the polyspectra-based algorithms exhibit faster convergence rate than the
Bussgang algorithms. However, this immproved performance is at the expense of more computa-
tional complexity. On the other hand, blind equalizers based on nonlinear filters are well suited
for channels that have nonlinear distortions {39], {40].

The Godard algorithm is probably the most widely used blind equalizer in digital communica-
tions today due to its simplicity, low computational complexity, and constant modulus property.
Its main drawbacks, however, is slow convergence and no guarantee for global convergence (con-
vergence starting from arbitrary initial guess). The paper describes the development of the
CRIMNO algorithm (i.e., criterion with memory nonlinearity) which is shown to have the sanie
advantages as Godard algorithm (simplicity, low complexity, constant modulus property) and yet
guaranteeing much faster convergence [12], [13]. Extension of the CRIMNO algorithm to the case
of colored input signals is also presented.

The polyspectra-based adaptive blind equalization algorithms are also described in the pa-
per. In particular, the Tricepstrum Equalization Algorithm (TEA) [24], the Power Cepstrum
and Tricoherence Equalization Algorithm (POTEA) [7], and the Cross-Tricepstrum Equalization
Algorithm (CTEA) [8] are presented, as well as their advantages and limitations. It is shown
that these algorithms perform simultaneous identification and equalization of a nonminimum

phase communication channel from its output only. Simulations with PAM and QAM signals




demonstrate the effectiveness of the polyspectra-based algorithms.,
Finally, the paper provides av overview of the neural network based adaptive equalization

algorithms either with or without a training sequence (11}, [20], [26], [27], [39], [10], [19].

2 DEFINITION OF BLIND EQUALIZATION PROBLEM

Let us consider the discrete-time linear transmission channel whose impulse response { (i)} is
unknown and possibly time-varying. The input data {£(:)} are assumed to be independent and
identically distributed (i.i.d.) random variables, with non-Gaussian probability density function.
Let us also assume, without loss of generality, that the sequence {r(i)} has mean E{r(:)} =0
and variance E{|Jz()|*} = Q,. If r(i) is real, we may drop the magnitude function and simply
write E{z°(:)}. Initially, noise i not taken into account in the output of the channel. From

Figure 2.1, it follows that the model we consider is

y() = JG) * 2(d)
= D flk) zti—k) (2.1)
k

where “+” denotes linear convolution and {y(i)} is the received sequence. The problem is to recon-
struct (or restore) the input sequence {z(i)} from the received sequence {y(i)} or, equivalently,
to identify the inverse filter (equalizer) {u({)} for the channel.

From Figurc 2.1, we see that the output sequence {I(i)} of the equalizer is given by




= u(1) * (f(t) = z(i))

= ufy) x f{i) = (7).

So. to achieve

where

(i) =

0, otherwise.

Performing the Fourier transform on (2.4), we obtain

(8—wD)
e’ .

U(w)- Flw) =

In other words, the objective of the equalizer is to achieve a transfer function

(2.6)

In general, D and 8 are unknown. However, the constant delay D does not affect the reconstruc-

tion of the original input sequence {z(i)}. The constant phase shift § can be removed by a carry

recovery technique. As such, in the sequel, it will be assumed that D = 0 and 6 = 0.

Blind equalization schemes may be classified into three categories; i.e., those which utilize




nonlinearities in the output of the adaptive equalization filter. those which place the nonlinearity
in the input of the adaptive equalization filter, and those which utilize adaptive nonlinear equal-
ization filters. The Bussgang equalization algorithms with memoryless or memory nonlinearity
belong to the first category whereas the higher-order cumulant-based equalizers (TEA. POTFEA,
ete.) belong to the second category, as they perform memory nonlinear transformation on the
input dara of the equalization filter. Blind equalizers based on nounlinear filters, such as the
Volterra filter or neural networks, belong to the third category. Figures 2.2 (a)-(¢) illustrate the

block diagrams of the aforementioned three families of blind equalizers.

3 PERFORMANCE MEASURES FOR ALGORITHM EVAL-

UATION

Four different performance measures are usually considered in simulation experiments for the
testing of the blind equalization algorithms: the time-average squared error (E5gp). the tran-
sitional symbol error rate (SER), the residual intersymbol interference (IS1) and the discrete eye
patterns [43], [4t]. They are defined as follows.

Time-Average Squared Error(E g or MSE)

At iteration (1), the mean square error in the output of the equalizer is defined as :

EAsE = w2 lz(i= D) - 2(d (3.1)

where I(7) is the output of the equalizer at iteration (i) and (2 — D) is the corresponiing true
value. Note that the delay D, which is introduced by the chapnel and the equalizer, does not

affect the recovery of the original information {z(7)}. However, it musi be {aken into account in




the calculation of MSE (4). The MSLE (1) gives a neasure of both the noise and residual 181 at
the cutput of the equalizer.

Transitional Syinbol Error Rate (SER)

The SER indicates the percentage of wrongly detected symbols in consecntive intervals of 500

svimbols, e

b wrong detections i 500 svmbols
H00

Residual ISI
The residual IST in the output of equalizer is defined as fc "ows. Let { f{i}} be the chanuel impulse
response and {u(2)} the equalizer tap coeflicients at iteration (i). Let s{(¢) = f(i) » u(1), then

ST (P — max{|s(V#}
max{]s(¢){*}

ISI(:) = (3.3)

Physically. this indicates the amount ~{ ISI present at the output of the equalizer due to imperfect
equalization.
Discrete eye patterns
Discrete eve patterns (or equalized signal constellation) consist of all possible values of the outpu*
of the equalizer, I({), at iteration (i), drawn in two-dimensional space. We say that the
eve pattern is open when~ver the ideal decoding thresunolds are easily distinguishable between
neighboring equalized states.

In our simulations, all performance n.easures were calculated for many independent siznal
and noise realizations. For the E ygp, time averaging over 100 samples were performed for each

re..zation. The eye pattern at iteration (1) was obtained by drawing the output of eqi alizer for all




independent realizations and for a specific number of samples (for each realization) symmetrically

located around (i).

4 ALGORITHMS WITH NONLINEARITY IN THE OUT-

PUT OF THE EQUALIZATION FILTER

Let us assume that a guess for the impulse response of the inverse filter (equalizer), u,(7) has

been selected. Then,

ug(?) * f(i) = 6(i) + €(3) (4.1)

where €(i) accounts for the difference (error) between our guess u,(i) and the actual values of

u(i). If we convolve the initial guess of the inverse filter, {u_;,(i)}, with the received sequence,

{y(?)}, we obtain

z(7) (i) * ug(3)

= z(i) = f(3) * uy(3). (4.2)

Combining (4.2) with(4.1), we obtain

z z(i) * (8(3) + (7))

= [z(i) * 8(3)] +[2() * €(3)]

= z(i) + n(3) (4.3)

10




where

n(i) = 2(1) * €(1) (4.4)

is the “convolutional noise”, namely, the residual ISI arising from the difference between our
guess ug(7) and the actual inverse filter u(i).

Our problem now is to utilize the deconvolved sequence {Z(7)} to find the “best” estimate of
{Z(¢)}; namely, {d({)}. Note that in adaptive-filter literature d(i) is used to represent the desired
response [25]. Two criteria are employed to determine the “best” estimate of z(7) from the given
£(7) . These are the mean-square error (MSE) and maximum a posteriori (MAP).

Since the transmitted sequence z(¢) has a non-Gaussian probability density function, the MSE
and MAP estimates are nonlinear transformations of £(z). In general, the “best” estimate d(i) is

given by [3], [4], [23], [54].

d(i) = g[z(:)]  (memoryless)

or

-

d(i) = g[z(i),z(: - 1),...,Z(i—m)] (mth — order memory) (4.5)

where g¢[-] is 2 nonlinear function with or without memory. The d(¢) is fed back into the adaptive
equalization filter as shown in Figure 4.1. From his figure, it is also apparent that the nonlinear

function g[-] is in the output of the equalization filter.

4.1 Optimum Selection of Nonlinearities

4.1.1 Nonlinearities with MSE Estimates

In summary, a well treated classical estimation problem is as follows:

11




(o) = z(i)+ n(1) (4.6)
where

(i) n(:) is Gaussian. Note that if €(:) in (4.4) is long enough, the central limit theorem makes

the Gaussianity assumption for n(Z) reasonable.

(ii) {z(:)} are independent, identically distributed (i.i.d.) and in general non-Gaussian. The
pdf of (1) is known; in digital communications the {z(i)} are usually equi-probable discrete

signal points.

(iii) z(i) and n(i) are assumed independent.

Given the Z(i), we seek the MSE estimate of z(i), namely, dmse(?).

From Van Trees [52, p. 58], it follows that the best MSE estimate of {z(i)} given {Z(7)} is

the mean of the a posteriori density, i.e.,

dmse(i) = /_+°°dx 2P, 3(2/%)

o0

E{z(2)/2(2)}- (4.7)

where P./:(z/%) = £ f(;j/g')})‘(r) is the a posteriori density; Py/z(z/Z) is Gaussian, N(z(¢),Qn),
with Q, being the variance of {n(z)}; the a priori density P:(z) is the pdf of z(i), and P;;:(Z)

behaves as a normalization constant in the integral of (4.7).

If z(i) is zero-mean Gaussian with variance Q; i.e., P(z)is N(0,Q;), (4.7) reduces to

12




dmse(t) = é‘%b—i'(i) (4.8)

which, in turn, implies that g[Z(:)] is a linear function. However, when P.(z) is non-Gaussian,
the integral (4.7) can not be reduced to a simple expression and g{-] will be a nonlinear function.
In the sequel, we show dmse(?) versus Z(¢) when pdf P.(z) is uniform and Laplace.

Uniform Distribution

The a priori pdf is given by

51'7 A<z <A
P.(z) = (4.9)

0, otherwise.

Consequently, the a posteriori pdf takes the form

BED A<z <A

- P - - .

Ppi(z/3) = ! {4.10)
0, otherwise.

where

2
Ayz,3) = .2.1/_\_5\/__717__Q__;exp [_(_”_ﬁ_)_]

By(3) = /_’: Ay(z)dz.

Substituting (4.10) into (4.7), we obtain dmse(?) as a function of Z. However, this relationship is

not easy to express analytically and is obtained by numerical integration as shown in Figure 4.2.

13




Laplace Distribution
The a priori density is given by

. A .
Pz) = ;joxp[—A]xl] (4.11)

and thus the a posteriori density takes the form

o Ay(z,7)
Frpx/z) = 7;7(? (4.12)
where
. A 1 (z —7)?
{2(z,1) = S exp [—/\|1:|- 27‘_Qnexp[~ 50,
+00
Ba(z) = / Ao(z)dr.

Combining (4.12) with (4.7) and using numerical integration we obtain dmse vs Z as shown in

Figure 4.3.

4.1.2 Nonlinearities with MAP Estimates

In this section we treat the estimation problem

#(i) = z(i)+ n(3)

where n(?) is Gaussian and z(?) is i.2.d. non-Gaussian. However, we seek MAP estimate of z(z).

namely dmap(#) when n(z) is white or colored, or correlated with z(z). The colored noise case.

14




as well as the case of correlated noise with z(i), will result into a memory nonlinear relationship
between dmap and I(:); ie., dmap(?) = gl&(i), 2(i = 1),..., (¢ = m)]. If z(i)is Gaussian i.i.d.
and n(i) is white Gaussian, independent from r(:), then the dmap(¢) is identical to dmse(?) and
is given by (41.8).

If we denote £ = [z(i),2(i—1),...,2(1)] and & = [2(i),%(¢ ~ 1),...,Z(1)], then a posteriori

pdf is given by Van Trees [p. 58]

Py(z)- Py/(i/z)

Pz(z/2) = Fla) (4.13)
and the MAP estimate, dmap~ of 2 given I is the value of z which maximizes #(z), where
{z) = €nPz(2/z)+ (nP(z). (4.14)

where the denominator of (4.13) does not contribute to the maximization of ¢(z).

CASE I: White Gaussian Noise

In this case the n(¢) is white, Gaussian N(0,Q,), and independent of z(7). It is also assumed
that {z(:)} are i.i.d. and non-Gaussian. Consequently, joint pdfs are expressed as products of

marginal pdfs and the MAP estimate at each iteration {i}, dmap(¢), is obtained by maximizing

£(z(i)) = €nPz(Z/x) + (nPr(z).

That is to say that the estimation problem is decoupled and the resulting relationship
dmap(i) vs Z(1), is memoryless.

The following memoryless nonlinearities can be derived.

15




(1) Uniform Distribution (1.9)

diapte) 9 F). - A< F(I) < A (1.15)

AW Iy > A

Note that dpap does nocdepend on Q.

(1) Laplace Distribution (1.11)

F) 4 AQws F(i) < —AQn
dimap(d) = 0, =AY, <) <AQ, (:1.16)

i) = AQuy E(1) > AQ,.

Here the MAP estimate depends on Q.. For the symmetric uniform and Laplace a priori distri-
butions the resulting a posteriori pdf, P;/.(1/x), is asymmetric.
Figures 4.4 and 1.5 itlustrate the MAP memoryless nonlinearities.

CASE II: Colored Gaussian Noise

In this case we assume that n(7) is colored Gaussian N (0, R) where R is m X m correlation

matrix. On the other hand. {n({)}. Based on these assumptions, the numerator of (4.13) is

PJ_‘(£) - P J_(.i/i) = [H PI(I(l))} : Pi/_r_(;i_/i) (4.17)
=1

where

16




and
™"
IT Pty = [Pxto))™
1= 1
For mathematical tractability, we cousider the case m = 2 and derive the memory nonlinear

relationships dyapli) vs o

For m = 2 the correlation matrix takes the form

p
I =0Q,- . el < 1 (4.18)
p 1

For simplicity, we also define the following vectors

Iy A (1) i
= = E‘
K z; ) (i-1)
Ty \ z(1)
2 = z. (4.19)
T2 \ z(i-1)
(i) Uniform Distribution (4.9)
Maximizing (4.17) is equivalent here to minimizing
J = (E~z)TR Y &-12) (4.20)

with the restrictions -\ < z; € XA, —=A < z5 < A. Hence, we seek a point in the area

X2 ={(z1,22) : =2 <27 €\, =X < z; < A} such that J is minimized. Differentiating J

17




with respect to oy and rp wnd setting the derivative to zero we obtain

ry)

I} = pldy -oay) 0.

(Fs -

From (L2001 is apparent that il Fe Xy, that is — N <~ rp < XNand =\ < 5, <\, then

‘[llll.lp

for ce,

1+

‘llm;lp -

‘[.‘nl;Lp

when & is outside X, the minimum is achieved on the boundary of X, That is

d”nap = L . /\ . sgn[.i'l] + \l - L)fc[fl — ‘l)(A!"_g — :\S‘L’,H[.i‘)])]
dllllllp = (l - k) -A 'Sgn[j"[] + k- ft[j'l - /)(.i?( e Asgn[i‘;])]
for # ¢X

where
A, > A
fo(x) = r, |r]<A
-, T < —=A.

(i1) Laplace Distribution (4.11)

To obtain the MAP estimate is equivalent to minimize

|53
L]

J = Mz + Mzl + =[(F - 2)TR™Y

2|

18

(1.21)

(4.23)

(4.25)




The necessary conditions are

: Asgnfzy] 4+ c(xy — &) —cp(z—22) = O
. Asgn(zo] + ¢(z2 — £3) —ep(z1 - #1) = 0. (4.26)
where ¢ = s—-—. Clearly, (4.26) is a nonlinear system of equations. Two special cases

Qn{l-p*)"

are the following: 1) when —A/c < Z; — p#2, &2 — pZ1 < A/c, then dymap = 0, and 2)

when p = 0, the problem reduces to the case of white Gaussian noise.

4.2 The Bussgang Algorithms

Fig. 4.1 illustrates the Bussgang adaptive blind equalization algorithms when an LMS type or
stochastic gradient algorithm (53] is used for the adaptation of the equalizer coefficients, and the
nonlinearity ¢(*)[-] is memoryless [3], [4], [23]. The following equations, consistent with the block

diagram of Fig. 4.1, describe the Bussgang family of algorithms:

w(i) = [ui(d),...,un()T equalizer taps
w0) = [0,...,1,...,0/ initial tap values
y(@) = ([y(¢),...,y(i— N+1)]T  input to the equalizer block of data
: = 0,1,2,... iteration index
(4.27)
(i) = _qH(i)g(i) equalizer output or reconstructed sequence

d(i) = ¢W[Z(7)] :g(‘)[gH(i)y(i)] output of ncnlinearity
e(?) = d(z)— Z(7) error sequence

w(i+1) = u(i)+ py(i)- e (i) LMS-type adaptation

19




[

4.2.1 Convergence Rate and Properties

From (4.27) and igure 4.1, it is apparent that the output sequence of the nonlinear function,

d(1). “plays the role” of the desired response or the training sequence. It is also

apparent that the Bussgang technique is simple to implemnent and understand, and it may be
viewed as a minor modification of the original LMS algorithm (the desired response of the original
LMS adaptation is @ memoryless transformation of the transversal filter output). As such, it is
expected that the technique will have convergence that will depend on the eigenvalue spread of
the autocorrelation matrix of the received data {y(:)}.

From (4.27), the LMS adaptation equation for the equalizer coeflicients is given by
u(i 4 1) = w(3) + pu(e) e(2) (4.28)
If we obtain the expected value (ensemble averaging) of (4.28), we have

E{w(i+ 1)} = E{u(d}+uE {y() (o9 F0)] - ()}

= E{u(i)} + uE {y(gVEO]} - nE{y()F (D). (4.29)
The adaptive algorithm converges in the mean when
E{y(e" 20} = E{y(d)& (i)} (equilibrium)
and it converges in the mean-square when
E{u" (il 20N} = B ) :

20




E{z()g™ 30|} = EEOFO). (4.30)

Thus, it is required that the equalizer output (i) be Bussgang at equilibrium.
Note that identity (4.30) states that the autocorrelation of Z(i) (right-hand side) equals the
cross correlation between Z(i) and a nonlinear transformation of £(¢) (left-hand side). Processes
which satisfy property (4.30) are said to be Bussgang [10]. In summary, the adaptive Bussgang
techniques converge when the equalizer output sequence, {Z(i)}, becomes Bussgang (necessary
condition).

A stochastic gradient algorithm (steepest descent) essentially minimizes iteratively a perfor-
mance index J(i) = E{G[#(i)]} with respect to the equalizer coefficients u(i). A more general

form of the equalizer taps adaptation equation (4.28) is [25)

u(i +1) = 1(i) - uVuJ(i) (4.31)

where V,J(%) is the gradient of J(i). Differentiating J(i) by using the composite function rule,

we obtain

V. J(3) —E{V.[2(3)] - V:[G(2())]}

I

—E{y(i) - Ve(G(Z()]} (+.32)

By dropping the expectation operation, i.e., by using a single-point unbiased estimate,

we obtain
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VJ() = —y(i)e(i)

where

e"(1) = Vi[G(E())]

= ¢'[#()] - 2°()

(4.33)

(4.34)

Equation (4.3.4) shows the relationship between the nonlinear function g'9[-] used in the Bussgang

Techniques with the nonlinear cost function G[-] which defines the performance index, J[-].

Example for one-dimensional modulation (PAM)

The first blind equalization algorithm was introduced by Sato in 1975 [47] for PAM signals. He

chose the simple nonlinear function

g(Z) = ~vsgn(z]

(4.35)

where 7 is a gain parameter which must be chosen to satisfy the Bussgang property (4.30) i.e.,

E{#(i)-ysgnl£()]} = E{|&()’}

or

E{z(0)*} /E{|z()I}-

It

2
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We could also write Sato’s algorithm in terms of
g (4.37)

4.2.2 Extension to QAM modulation

The extension of Bussgang algorithms to two-dimensional consteliations (QAM) is somewhat
straightforward (3], [4]. In the case of twe independent quadrature carriers, the conditivnal
mean estimate of an equivalent complex transmitted symbol z given the complex observation

Z = Zp + jZ; can be written as
d = E{r [t} = g[Zr] + jg(.). (4.38)

We keep the notation simple by omitting (7). For example, rhe Sato nonlinearity for OAM signals

takes the form [47].

9(Z) = yesgn(2) = y{sgn[Zr] + j sgn[Z,]}. (4.39

It is clear that real and imaginary parts of the data can Le estimated separately. The complex

data equivalent of the adaptive Bussgang Techniques is described in (4.27), but with

dD[E(1)] £ gV [2R()] + 5 9V [E1(3)). (4.40)

Consequently, the error sequence is

e(i) = {gVza(i)] - 2a(D)} +3 {gVE:1(D] - 2:(D)} - (4.41)
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For example, the "Stop-and-Go” algorithm introduced by Picchi and Prati [41]) is an adaptive

Bussgang technique with the following nonlinearity

o[2()] = i(i)+%Aa‘:(i)--;-Aa‘:(i)

+%B§'(i) - %Bi‘(i) (4.42)

where (i) is defined as the quantizer (slicer) output in Figure 4.1 and (A, B) is a pair of integers
té.king values (2,0) or (1,1) or (1,-1) or (0,0). The values of (A, B) are generally different at
each iteration, and how they are chosen is described later in this section.

Another exam—iﬁe of a Bussgang technique is the heuristic modification of the Sato algo-
rithm suggested by Benveniste and Goursat [5], [6]. In this case, the nonlinear function takes the

form

9[2(1)] = Z(3) + kiz(i) — k1Z()) +

ka|2(3) — £(3)] - [yesgn[Z(2)] - £(3)]
or

gl#())]) = #(i)+ |2(3) — #()]  {kyeJRrBED-Z(]

. ka[yesgn[Z(?)] - 2(2)]} (4.43)
where k2, k; are constants. From (4.38) we observe that the Benveniste-Goursat error function
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may be seen as a weighted sum of the Decision Directed (DD) [43] and Sato errors. On the
other hand the “Stop-and-Go™ error function (1.37) is the weighted sum of the DD error and
its conjugate. The weights of the two algorithms, however, are chosen in a completely different

manner.

4.2.3 Unknown Carrier Phase: The Constant Modulus Property

Equation (4.33) can be written in polar coordinates as
— f M - 20 .
d = 1’.1.17/.1} =re?. (1.41)

If we assume that all rotated constellations are equally likely, since the carrier phase is

unknown, then the conditional mean d in (4.39) has the same argument as z, and is given by

d = g[|z]] - & &) (4.45)

where g[] is a nonlinear function and |I| = /2% + %3, arg(Z) = arctan[Z;/Zg]. Combining (4.39)

with (4.4u) we obtain [3]. [4]. [23]

e( 1)

d(i) - (i)
= LR o] 2(1)

= i(i)[g”i—(li)” - 1]. (4.46)

te(2)]

Hence. the error term is independent of any fixed phase rotation of the signal constellation.

Equation {4.27) also represents the Bussgang technique for the case of unknown carrier phase,
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provided we substitute e(z) in (4.27) by e(i) of (4.41).
Example: The Godard (or CMA) Algorithm [22], {50]
Under the assumption that all rotated constellations are equally likely, Godard {22] suggested

that §[|Z]] in (4.41) be chosen as
G0 = 1]+ Ryl — [z (4.47)

where R, is a real constant. As we shall see this form has some very nice properties. Special
cases of (4.42) include

allE) = (L+ RIEI =12 (p=2)

and

giz]) = Re  (p=1).

The parameter R, is a gain constant which has to be chosen according to {4.30). Since

2o 2()4ll2()I] :
g{z(?)] = 12(3)] (4.48)

combining (4.43) with (4.30), we obtain
E{JZG)* + Rpl2(D)P - 21|} = E{12(:)|*}

or
E{|z(:)*"}

= TGP

(4.49)
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At perfect equalization, #(i) = z(i)e’? (assuming time delay D = 0), and thus
R, = —=%, where m, = E{]Z(:)"}.
Combining (4.34) and 4.43), we obtain the Godard performance index nonlinearity, namely,
GE®) = g (EOF - Fy) (4.50)

Fig. 4.6 summarizes the nonlinear functions of the Bussgang iterative techniques.

4.2.4 The Sato and Benveniste-Goursat Algorithms

Sato [46] introduced the first blind equalization scheme in 1975 by introducing the sign non-
linearity to generate the desired response of the adaptive scheme shown in Figure 4.1, i.e.,
d(t) = v sgn [£(¢)]. In 1986, Sato [47] extended his 1-D PAM algorithm to the multidimensional
blind equalization problem where all transmitted signals become vector processes and all impulse
responses (channel and equalizer) are square matrices. The extension, however, is straightfor-
ward. For example, in the two-dimensional case of QAM signals the “sign” nonlinearity becomes

the “complex sign” defined by (4.34). The error signal of the Sato algorithm

e,(i) = 7 cgn [8(i)] - &(i) (4.51)

is very noisy around the solution unless the transmitted sequence z(7) takes only the values +1.
In other words, although e,(¢) is zero-mean at the solution, it has a large variance. On the other
hand, the Decision Directed (DD) error signal ep(z) = Z(¢)—(7) ( see Figure 4.6) [33], though not

robost for blind equalizers, enjoys the property of being identically zero at the solution. Hence,
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Benveniste-Goursat [5] suggested the idea of combining (heuristically) both error signals in the

form of a weighted averaging as follows

epc(i) = k1 ep(i) + k2 es(i) lep(?)] (4.52)

where ky,k, are constants. The rationale behind the error expression (4.47) is the following.
Before the eye of the equalizer opens, |ep(?)| is large and thus the Sato error es(i) contributes to
the proper direction. At the opening of the eye and thereafter |ep(i)| becomes small and the DD
mode of the error egg(i) takes over to speed up convergence and to achieve faster rate than the
original Sato algorithm with eg(¢). It is no wonder, therefore, that in our simulation experience
we have seen the Benveniste-Goursat (BG) algorithm exhibiting initially very slow convergence.

A faster convergence rate has been observed only after the eye opens. The Benveniste-Goursat
algorithm may be seen as the Sato algorithm that switches automatically to a DD one when the
eye of the equalizer opens. The extension of the Benveniste-Goursat algorithm to a Decision

Feedback Equalization (DFE) implementation (2] was given by Macchi et al. [32].

4.2.5 The Godard and Donoho (or Shalvi-Weinstein) Algorithms

The basic motivation behind the development of Godard’s algorithm introduced in 1980 {22] was
to find a cost function that characterizes the amount of ISI at the equalizer output independently
of the carrier phase. Since the input sequence z(i) is i.i.d., the cost function that satisfies the

aforementioned conditions is

JP = E{(12(3) P} z(i)")}, (4.53)
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which depends on the input sequence, For p = 2, and ¢ = 2, J(?) takes the form
IO = B0l + |2l - 2126 Pl=()1%) (4.54)

where wo assume that E{z%(:)} = 0. However, (4.48) or (4.49) can not be used in practice because
{z(i)} is inaccessible. To avoid this difficulty, Godard [22] suggested the use of a dispersion
function

D® = E{(12()P - Rp)"} (4.55)

which was shown to behave like the cost function J() and yet it is independent of the input
sequence. Note that R, is defined by (4.44). Assuming p = 2, ¢ = 2, (4.49) and (4.50) can be

written as [22]

J® =g+ I+

{4(B{=? - 1O - 2 L{I=())?} - 1R (4.56)
k
and

DO = + 1o+

{4(B{=()P)? - 1£(0) — 2E{1=()|'}} - {Z SR + RS -~ E{lz(i)l“}} (4.57)
k

where Y is taken for k # 0 and

ho= E{lz(OF} (1~ 1£0)) + E{lz()I*} - 21 (R,
k
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Jy o= '.’th'{lrm;"’}r'-{(Zlﬂk)l"’) -Zlf(k)l‘}v (4.58)
S k

Comparing (+.51) with (-£.52), we see that for D% to be similar to J*) | the following inequality
must be satisfied:

HELOFD? 1O = 2E{=()*} > 0

or

E{jz(O"}

| F(0)f* >

Godard suggests (4.53) and f(i) = 0 for i # 0 as a way of initializing his algorithm.

Based on what has been reported in literature [50] and on our simulation experience, the
Godard algorithm has always converged to a minimum that opens the eye when Godard’s initial-
ization procedure is being followed. The Godard algorithm is summarized in (4.27) and Fig. 4.6.
Its convergence for p = 2 is better than p = 1. In addition, Godard noted that convergence im-
proves when the step size  is divided by 2 at each 10,000 iterations {22]. The Constant Modulus
Algorithm (CMA), suggested independently by Treichler and Agee in 1983 [50], is the Godard
algorithm for p = 2 and R; = 1. Ding et al. [15] reported that the Godard-type algorithms
exhibit local (not global) undesirable minima.

Shalvi and Weinstein recently introduced [48] a blind equalization scheme based on the idea of
matching the kurtosis measures between the transmitted sequence {z(:)} and the reconstructed
sequence {Z(¢)} at the output of the equalizer. The kurtosis ot the input complex sequence r(z),

is defined by

K(z(i)) = E{lz(D'} - 2E{[z())I*} - |E{=2()]})? (4.60)
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which is zero for complex Gaussian random variables. The important point made in [48] is that
if E{|2(0)°} = E{e()}, then (1) [N(E) < [N (2() and (2)  [K(2(2)] = [K(x(2))] if
perfect equalization is achieved. Thus, the problem is to maximize the magnitude of the kurtosis
measure |A(Z(:))| in the output of the equalizer at each iteration subject to the constraint
E{|3(i)]*} = E{]x(:)|*}. One of the special cases of the Shalvi-Weinstein algorithm is the original
Godard algorithm. It has recencly been recently reported that the Shalvi- Weinstein algorithm was
originally introduced by Donoho [16] for real-valued signals and that the algorithm’s convergence

is only guaranteed for infinite-length equalization filters.

4.2.6 The Stop-and-Go and Decision-Directed Algorithms

The basic idea behind the Stop-and-Go algorithm, which was proposed by Picchi and Prati
[41] in 1987, is to retain the advantages of simplicity and fast convergence (in open eye-pattern
conditions) of the Decision directed (DD) algorithm [33] while attempting to improve its blind
convergence capabilities.

The adaptation error ep(z) used in the DD algorithm is [33]

ep(i) = (i) — (i) (4.61)

where () is the output of the equalizer and Z(:) the output of the threshold detector. Assuming
that the equalizer initial tap setting corresponds to a closed eye-pattern, ep(t¢) will be large most
of the time due to the large number of incorrect decisions £(i). Consequently, the DD algorithm
cannot converge in closed eye-pattern conditions.

In the Stop-and-Go algorithm, Picchi and Prati proposed the use of the error sequence
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e(i) = S{A(en(i) + B)epi)} (4.62)

where
A()) = Ig(d) + I;(3)
B(i) = In()- Ii(i)
and
‘ 1, if sgn[eD(i)]R = sgn[es(i)]R
Ir(i) =
0, otherwise
. 1, if sgnlep(i)); = sgnles(i)]r
Ir(2) =

0, otherwise.

Note that eg(¢) is the Sato error given by (4.46).

From the foregoing, it is clear that the Stop-and-Go algorithm is essentially the DD algorithm
when the eye is open. It is mostly during closed eye-pattern conditions that the Stop-and-
Go adaptation rule takes place. Also, it is clear that the Benveniste-Goursat and Stop-and-
Go algorithms have different convergence properties when the eye-pattern is closed and similar
convergence properties when the eye is open. The modifications of this algorithms have been
proposed to incorporate joint equalization and carrier recovery, decision feedback equalization [1]

as well as fractionally spaced equalization [21], [45].
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4.3 The CRIMNO Algorithm

Although the Bussgang algorithms are different from each other, as we have seen, they perform
only memoryless nonlinear transformations on the equalizer outputs to generate the desired re-
sponse. This, in turn, implies that the cost functions they attempt to minimize with respect
to the equalizer coefficients are also memoryless. These algorithms do not explicitly employ the
fact that the transmitted data are statistically independent, which is the essence of the new crite-
rion we introduce in this section. Since statistical independence of the transmitted data involves
more than one data symbols, this results in a memory nonlinear transformation on the equalizer

outputs and thus a memory nonlinear cost function.

4.3.1 Criterion with Memory Nonlinearity

As we have seen, Godard solves the blind equalization problem by proposing a cost function
which is independent of the transmitted data, and yet reaches its global minimum at perfect
equalization. The Godard cost function ( also known as the constant modulus algorithm (CMA)
[22] is given by (4.50) and (4.44). ]

Note that only the expected value of some function of the current equalizer output appears
in Godard’s cost function. Therefore, the Godard criterion only makes use of the probability
distribution of the transmitted data. It does not explicitly use the fact that the transmitted data
are statistically independent.

Assume that perfect equalization is achievable and consider the situation where perfect equal-

ization has indeed been achieved. That is
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where d is some positive number, which accounts for the delay. Since the transmitted dita
z(i) are statistically independent from each other, so are the equalizer outpucs (i) at perfect
equalization. In addition, for most transmitted data constellations, the mean of transmitted data

z(t) is zero. Therefore, at perfect equalization , we have

E{3(3)i"(i =)} = E{z(i - D)z*(i =1 = D)} = E{z(i — D)} - E{z"(i =~ D)} = 0

By making use of this property and combining it with Godard’s criterion, we obtain a new
criterion, called criterion with memory nonlinearity (CRIMNO), which is the minimization of the

following cost function:

M® = woE (|2(3)|P — Ry)® + wy [E{2(1)Z°(i ~ D} + -+ wa| E{E()F"(i = M)}*.  (4.63)

The rationale behind the CRIMNO is that since each term reaches its global minimum at
perfect equalization, by appropriately combining them, we can increase the convergence speed of
the corresponding CRIMNO algorithm [12], [13]. This is clearly demonstrated in the simulations
section.

Remarks:

1. Memory nonlinearity: the CRIMNO cost function depends not only on the current equalizer
output, but also on the previous equalizer outputs. As such, it results to a criterion with

memory nonlinearity. The parameter M determines the size of memory.

2. Generalization of the Godard criterion: when wg = 1, w; = 0 for ¢ # 0, the CRIMNO
cost function reduces to the Godard cost function. Therefore, the CRIMNO criterion may

be seen as a generalization of the Godard criterion.
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3. Constant Modulus Property: the CRIMNO criterion preserves the constant modulus prop-

erty inherent in Godard.

4.3.2 CRIMNO Blind Equalization Algorithm

Define the equalizer coefficient vector u(7) = (u1(3), -+, un(i)]?, and the received signal vector

y(%) 2 [(3), -+, y(i— N+1)]T, where VN is the length of the equalizer. Then the equalizer outputs

are

-0 =y (i~ 1) u(@), {=0,1,---, M, (4.64)

where superscript T denotes transposition of a vector.
Differentiating the cost function M(?) with respect to the equalizer coefficient vector u(i), we

obtain [12]

M3
du(i)

2wy [E(y™ (2 — D)) E(E7()2( ~ 1)) + E(y7()2(e — 1) E(2(2)&"(: - 1))]

= 4wo [y ()Z(1)(12(3)|* ~ R2)]

+...

+2wp E(y" (i — M)Z(i))E(3"(5)3(i— M)+ E(y"(1)3(i — M) E(3()E(i = M))]. (4.65)

By using the steepest descent method to search for the minimum point, we obtain

u(i +1) = (i) - a - {4wo Bly" (1)E(1)(12(2)]* ~ Ro]
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+2w1[E(y_'(i ~ DIENEE ()20 - 1)+ E(yT ()= D) E(E(DHI (0 - 1))
+ ...

2w E(y (i = MDE(D)) E(E ()2 = M) + E(y ()2 = M))E(E(5)2"(i — M))}(4.66)

wheje

(i) £ [y (i), a7

In (4.6), the expectation are the ensemble averages taken with respect to transmitted data z(:)
while the channel impulse response f(i) and the equalizer coefficients u(i) are treated as fixed.
If we use single point estnsates for the ensemble averages, we obtain the stociastic gradient

CRIMNO algorithm:

i+ 1) = u(i) - afdwey" (NZENIEN? = R2) + 2wi(y™(i = DE(IEE ~ DIF + 37 — DI — D]E(HIP)
+ -4 2wa (YT (DE(DIE(E = M)+ y7 (i = M)E(i — M)|2(i)]%)]
= (i) - aly"()F() * (4wel 2 + 2wr|E(i — VP + - + 2war|2(i - M)|* — 4woR2)

+2wiy" (i — 1D)E( = DIEE2 + -+ + 2wary™( = MEG ~ M) 2] (4.67)

Note that at each iteration, all equalizer outputs #(¢ —1),! = 0,1,---, M are recalculated using
current (most recent) equalizer coefficient vector u(i) via z(i —!) = yT(i —~ Du(?). This requires a
lot of computations. If, instead of using the current equalizer coefficient vector u(i)}, we use the
delayed equalizer coefficient vector u(¢ — ) to calculate #(i — [). Note that (for small step-siz~

which is required for the stability of stochastic gradient-type algorithm, the difference between

u(?) and u(i—!) is negligible. Then at each iteration we will need to calculate only one equalizer
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output I(¢) using the current equalizer coetliciont vector u(?f).

1.3.3 Adaptive Weight CRIMNO Algorithm

Phe shape of the cost function depends on the choice of weight wy. So does the performance of
the CRIMNO algorithm. Here. wo describe an ad hoe way of adjusting the weights on-line in the
blind equalization process.

The basic icea is to estimate the vidues of all terms in the CRIMNO cost function over a
block of data and then set the weights used in the next block proportional to the deviation. of
the corresponding terms frow their ideal vadues at perfect equalization. The rationale behind
this scheme is that if one term in the criterion has a lacge deviation from its ideal value, then in
the next block the weight associated with it will be set equal to a large value, and consequently,
the gradient-descent method will bring it down quickly.

To elaborate on this idea, we rewrite the CRIMNO cost function as

M@ = wgdo+wydy + -+ wardyy, (1.6%)

where

Jo = E(HDP - R,

Jo= |EFEHDE (=D 1<I< M. (4.69)
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Detine the deviation of the Joh teenn D7) by

A V) ~
DO S - 8, (1.70)

R . . - o e .
where JV i the value o J; at perfect equalization (Jl( V=0, 1= 1,---, Al'). Then the weights

are adjusted wsing the following formulae:

1w D(Jo) voD(Jp) < A
Wy =

A 10 D(Jg) > A

1D(J) 1D < A

A 1D(J) > A

where Ay > 0 is the scaling constant for the first term, v > 0 is the scaling constant for the other
terms in the CRIMNO cost function, and A is a constraint on the maximum value of the weights
to guarantee the stability of the algorithm.

Fhe CRIMNO algorithm with weights adjusted in this way is called adaptive weight CRIMNO

alzorithm. Some in-depth comments are provided below:

Lo Wihen the deviations of all terms vary proportionally, the adaptive weight scheme be-
com-s an adaptive step-size algorithm. Moreover, the adaptation is done automatically.

o wien the alaorithm converges, then weights decrease to zero. Hence, the adaptive

welxns CRININO aleorithm acquires as a byproduct the decreasing step-size, which has

Beer prosen to be an optimal strategy for equalization [51].

2B i iapelve weishs CRININOQ algorithn, the shape of the cost function is changing.
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The local minima of the cost function are also changing. Thus, what is local minimum of
the cost function at one iteration may not be at the next iteration. However, whatever
the change of the weights, the global minimum does not change, and it always

corresponds to perfect equalization.

. The adaptive weight CRIMNO algorithm tends to move out of a local minimum of the cost
function quickly, if the cost function has local minima and the algorithm gets trapped in
one of them. This is based on the following arguments. In the adaptive weight CRIMNO
algorithm, the equalizer coefficient increment, Au(i+1) = u(i+1)~u(?) is a random vector,
the variance of which determines how fast the algorithm will move out of a local minimum.
The variance of the equalizer coefficient increment depends on the step-size «, gradient
%‘% and the weights w; (proportional to D(J;)). The step-size and gradient are the same
with the fixed weight CRIMNO algorithm; we thus concentrate on the third one: wy, or
equivalently D(J;). At a global minimum of the cost function, D(J;) are all small, thus,
the variance of the equalizer coeflicient increment is small. Therefore, the algorithm will
remain near the global minimum. However, that is not the case with a local minimum. In
that case, D(J;) will be large, therefore, the variance of the equalizer coefficient increment
will be large (relative ot the case at the global minimum), and the algorithm will move out

of that minimum quickly. Moreover, the larger the deviation D(J;), the more quickly the

algorithm will move out of the local minimum.

. Blocks of data are used to estimate {J;}. The block length should be sufficiently long to
make the variances of the estimates small, but not long enough to make the weight update

fall behind.
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4.3.4 CRIMNO Extensions

In this section, the CRIMNO ideas, i.e., memory nonlinearity, are extended to the following cases:

(1) the case of correlated inputs; (2) tire case when higher-order correlation terms [38] are utilized.

Colored CRIMNO

One of the key assumptions in the CRIMNO criterion is that the transmitted data are independent
and identically distributed (¢.:.d). However, in practice, this may not be true for QAM signals.
Usually, in order to overcome the phase ambiguity caused by the squaring loop for carrier recovery,
differential encoding techniques are used, which correlate the input data when the source symbols
are not equiprobable. Since the operations of differential encoding are known, the autocorrelations
of the input data can be derived. In the case where the autocorrelations of the input data are

known a priori, the CRIMNO criterion can be modified as foliows:

MP) = woE(12(0)|P — Rp)? +wi| E(3()&"(i— 1) = B[+ -+ wy | E(F()2™ (i — M) - Bur]® (4.72)

where g, 2 E(z(i)z*(i ~ 1)) are the known autocorrelations of the transmitted data.
Higher-Order Correlation CRIMNO
Here, a criterion which exploits the higher-order correlations, such as the fourth-order statistics

of the equalizer output, is given below:

MP) = woE(

)P~ Rp)* 4+ D wi|E(E()E (i~ )?
!

+ > vl EGG(0)E*(i — 5)E(i = k)E(i = D)]? (4.73)
sk all different
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The performance of both (4.73) and (4.74) criteria needs to be investigated.

4.3.5 Computer Simulation

Computer simulations have been conducted to compare the performance of the adaptive weight
CRIMNO algorithm with that of the Godard (or CMA) algorithm. Fig. 4.6 shows the perfor-
mance of the adaptive weight CRIMNO algorithm, compared with that of the Godard algorithm
under the different step-sizes, including the optimum one: We see that the performance of the
adaptive weight CRIMNO algorithm is better than or approaches that of the Godard algorithm
with optimum step-size. Fig. 4.7 shows the performance of the adaptive weight CRIMNO algo-
rithm for different memory sizes (M = 2.4.6). Fig. 4.8 shows that the corresponding eye-patterns
at iteration 20000. We see that the larger the memory size M, the better the performance of
the adaptive weight CRIMNO algorithm. Table 4.2 lists the computational complexity of the
CRIMNO algorithm, the adaptive weight CRIMNO algorithm, and the Godard algorithm. We
see that there is only a little increase in computational complexity. Therefore, the performance

improvement is achieved at the expense of little increase in computational complexity.

5 ALGORITHMS WITH NONLINEARITY IN THE INPUT

OF THE EQUALIZATION FILTER

The Polyspectra Based Techniques

Another class of blind equalization algorithms are those algorithms which are based on higher-

order cumulants or polyspectra [36]. such as the tricepstrum equalization algorithm (TEA)
T

[24], the power cepstrum and tricoherence equalization algorithm (POTEA) [7], and the cross-

tricepstrum equalization algorithm (CTEA) [8]. All these algorithms perform nonlinear transfor-
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mation on the input of the equalization filter. This nonlinear transformation, e.g. the generation
of the higher-order cumulants or polyspectra of the received data, is a memory nonlinear trans-
formation, because it employs both the present and the past values of the received data. The
use of the higher-order statistics of the received data is necessary for blind equalization, since
the correct phase information about the channel can not be extracted from only the second-order

statistics of the received data [14], [29], [34], [35], [37], [42].

5.1 Definitions and Properties: Cumulants and Higher Order Spectra

The readers are assumed to be somewhat familiar with the basic material of higher-order spectra.

However, some important properties which will be used in the subsequent sections are given.

5.1.1 Definitions

1. Definition of Cumulants:
Given a set of n real random variables {z,,z,,---,z,}, their nth joint cumulants of order

is defined as

RO nd(vy,ve, -+, V)
dvydvy - - - Ovy

A, . -
L(zy,z2, - zn) = (—]) .v1=v2=---=vn=0 (5.1)

where

(b(vl, Vg, Un) = E{exP j(lel +--+ vnxn)}' (5'2)

Given a real stationary random sequence {z(:)} with zero mean, E{z(i)} = 0, then the

nth-order cumulant of the random sequence depends only on the time difference and is
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defined as

ananI(vl7 V2, ,vn)

A
LI v y "y Tp— = -7 )" = = e =V = .
(Tl T2 ' 1) ( _]) 8018‘02 — -B'Un l (%] V2 [ 0 (5 3)
where 71,73, -+, Th—1 are integers and
®.(vy,v2, - +,v,) = E{exp j(n1z(d) + vaz(i + 71) + - - + vp2(2 + Tno1))} (5.4)

Given a set of real jointlv stationary random sequences {zx(¢)}, k = 1,2,---,n with zero
mean, E{zk(i)} = 0, then the nth-order cross-cumulant of the sequences depends only on

the time difference and is defined as

6"11’1@_@‘1,2'...'71(”1 U I Un)
dv10v,y -+ - Bv,

A .
Lz,1,2,~--,n(7‘1, T2y, Tn—l) = (—J)n

where 71,72, -, Th—1 are integers and

¢3,1'2,...,n(1)1, V2, v'vn) =F {exp j(lel(i) + ‘Uz:l:z(i + Tl) +-0 4 vnzn(i + Tn—l))} .

(5.6)

. Definitions of Higher-Order Spectra.

Higher-order spectra are defined to be the Z-transforms of the corresponding cumulants
[34], [38]. Specifically, a nth-order spectrum of a real stationary zero mean random se-
quence {z(%)} is just the (n — 1)-dimensional Fourier transform of the nth-order cumulant

L.(7y,73,--+,Th-1) of the random sequence. That is
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-1

e )

n-1

g faX 7T

Se(z1y2327 1 2nm1) = E Lr(ThT?v"'yTn-l)HZ[ L (5.
=1

T1T2, " Tn—1
When n = 2,3,4 the corresponding spectrum is called power spectrum, bispectrum, and
trispectrum, respectively.
A nth-order cross-spectrum of a set of real stationary zero mean random sequences {z(7)},

k=1,2,---,n,is defined as the (n — 1) dimensional Z-transform of the nth-order cumulant

Lyy2,.n(T1,72,- - Th_y) of the random sequence, that is
n-1
S tno1) 2 o 5
£,1.2,-0n(21, 22, 1, Znm1) = Z Lza2,n(T1,72, 0, Tnt) H ST (5.8)
T1,72, Tn—1 I=1

. Definitions of coherence.

Coherence is defined as the higher-order spectrum normalized by the power spectrum.
Specifically, a nth-order coherence of a real stationary zero mean random sequence z(i) is

defined as

S.t(zl, 22,000y zn—l)
[S2(21)Sz(22) - - - Sal(2n1) ST 27 ]2

A
R.!:(31732""1zn—1) = (59)

An alternative definition for the nth-order coherence, which is equivalent to the above

definitions, is

-

)e 51(21,22,"',2,1_1) z

5.10)
—1 _—1 —1 (
51;(&1 2 BT g |

R(21,22,-,2n1

. Definitions of Cepstrum of Higher-Order Spectrum

The cepstrum is defined as the inverse Z-transform of the log function of the spectrum.

Specifically, a cepstrum for the nth-order spectrum of a real stationary zero mean random
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sequence {z(i)} is defined as

AN
CI(TI’T'Zv' . '»Tn—l) =Z l[l”' SI(‘ZI,:'Z’""ZYI.—I)] (5-11)

A cepstrum for the nth-order cross spectrum of a set of real stationary zero mean random

sequence {z(2)},¢=1,2,---,n, is defined as

A
cr,l,?.--~,n(T11 T2y 'Tn—l) =2Z ! [ln S.L‘,l,?.-'-.n(zlv 22y, zn—l)] (5‘12)

When n = 2,3,4, the corresponding cepstrum is called power cepstrum, bicepstrum and

tricepstrum, respectively.

5.1.2 Properties

Some important properties of cumulants are shown below.

1. If 21,23, --,%n can be divided into two or more groups which are statistically independent,

then the cumulant L(z,,z,,---,z,) is zero.

Specifically, if {z(7)} are an independent, identically distributed random variables, the nth-

order cumulant of the sequence {z(7)} is

Lr,7m2--, Tn-l) = 75(7'1)5(72) o '5(Tn—1) (5-13)

2. Cumulants of higher order (n > 3) are zero for Gaussian processes.
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3. If {z(4)} and {y(¢)} are statistically independent random sequences and, z2(i) = z(i) + y(7),

then

Lz(rla T2, "7y Tn-—l) = L.‘L‘(Tlv T2y, Tn-—l) + Ly(le T2y, Tn—l)' (5'14)

5.2 Tricepstrum Equalization Algorithin (TEA)
5.2.1 Problem Formulations

We assume that the received sequence after being demodulated, low-pass filtered and syn-

chronously sampled (at rate 71:) can be written as:

y(1) = 2(1) + w(i) = Z f(k)z(i~ k) + w(?) (5.15)

k=-IL1

where the nonminimum phase equivalent channel impulse response {f(¢)} accounts for the trans-
mitter filter, non-ideal channel (or multipath propagation), and receiver filter impulse response;
the input data sequence {z(i)} is generally complex, non-Gaussian, white, i.i.d., with E{z(7)} =
0, E{z(:)®} = 0 and E{z(4)*} - 3{E{z(:)?}]? = 7. # 0; for example {z()} could be a multi-level
symmetric PAM sequence or the complex baseband equivalent sequence of a symmetric QAM
signal; the additive noise {w(¢)} is zero-mean, Gaussian, generally complex and statistically in-
dependent from {z(%)}; we also assume that the channel transfer function F(z) (Z-transform of

{f(3)}) admits the factorization [24]

F(z)=A-I(z71)-O(2) (5.16)

the factor I(z71) = Hl_T‘i—'—l%—f"—z— lag| < 1,lex| < 1, is a minimum phase polynomial, i.e., with
k=1

zeros and poles inside the unit circle. The factor O(z) = H{‘;l(l = bkz),|bx] < 1is a maximum
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phase polynomial, i.e., with zeros outside the unit circle. The parameter A is a constant gain

factor. Finally, the sequence {y(z)} is the input to the blind equalizer.

5.2.2 Relations of Tricepstrum of the Linear Filter Qutput

The input to the channel, z(7), is a non-Gaussian i.i.d. random sequence, thus

Sz(z1,22,23) = V- (5.17)

The trispectrum of the output, y(¢), of the channel (linear filter) is

Sy(z1,22,23) = Yo F(21) F(22) F(23) F(27 25 23 %)

=y A* - Iz I(27Y) - I(231) - I(21, 22, 23) O(21) - O(22) - O(23) - O(27 25125 1)5.18)

Taking the logarithm of S, (2, 23, z3) and then the inverse Z-transform, after some manipulation,

we obtain [24]
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log(7:4%) m=n=10=0

~LAm) m>on=1=0
-4 as>om=I1=0
~140 I>0,m=n=0
%B(—m) m<0n=[{=0

< (5.19)
%B(_n) n<0m=1=0

N} =

cy(m,n,l) =

%B('l) l<0,m=n=0
—-;II-B(") m=n=10>0
éA(") m=n=1<0

0 otherwise

\

where, A(), B() are the minimum and maximum phase differential cepstrum parameters of the

system, corresponding to I(z~!) and O(z), respectively. They are defined as follows:
ry def & £ def &
AN E Z al - Z e BU) = Z b (5.20)
k=1 k=1 k=1

In addition, the following identity holds between the fourth-order cumulants Ly(m,n,!) and the

tricepstrum cy(m, n,1):

3 {A(")[Ly(m —dm )= Ly(m+ Jn+ L1+ D)} +
J=

1
S {BO(Ly(m - Jn = J1=0) = Ly(m + J,n,D)]} = =m - Ly(m,n,1)  (5.21)
J=1
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where we define,

AV T =1,...

J - ey(J,0,0) =
B-D, J=-1,...- .

AW B J = 1,2,... are the minimum and maximum phase cepstral coefficients respectively,
which are related to the zeros F/(z). However, in practice, the summation terms in (5.21) can be
approximated by arbitrarily large but finite values because A(Y) and B() decay exponentially as
J increases.

In practice the fourth-order cumulants Ly() in (5.21) need to be substituted by their estimates
L,(-) obtained from a finite length window of the received samples {y(i)}.

The TEA algorithm, uses (5.21) in order to form an overdetermined system of equations,
i.e., we have more equations than unknowns. Then, TEA solves this overdetermined system
of equations, adaptively, using an LMS adaptation algorithm. At each iteratior an estimate of
the cepstral parameters {A)} and {B)} is computed. The coefficients of the equalizer are

calculated for {4V} and {BM)} by means of the iterative formulas.

5.2.3 TEA Algorithm

Let:
{y(D)}: The received zero-mean synchronously sampled communication signal.
Ny, Ng: Lengths of minimum and maximum phase components of the equalizer.
P,q: Lengths of minimum and maximum phase cepstral parameters.

le‘(,i)(m, n,1):  Estimated fourth-order moments of {y(¢)} at iteration (7).
Iég(,i)(j): Estimated second-order moments of {y(i)} at iteration (3).

igi)(m, n,l):  Estimated fourth-order cumulants of {y(¢)} at iteration (7).

Symmetric PAM or QAM Signaling:
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In general, for 1-D (e.g. PAM) or 2-D (e.g. QAM) signaling with symmetric constellations:

LY (im0 = M (m,n, 1) = R (m) - RO (0 = D-RO ()} RO - my-ROURD(r - 0) (5.22)

For symmetric square (L x L) QAM constellations:

LW(m,n, 1y = 3 (m.n,1) (5.23)

and Ag)).Bfi‘])) are the minimura and maximum phase differential cepstrum parameters at iter-
ation (t) respectively. L; and L, are the orders of the minimum phase and maximum phase

components of the FIR channel, respectively. Note that, {a;}, la,} < 1 and {bl_} [b] < 1 are

the zeros of the minimum and maximum phase components of the FIR channel, respectively.

{u(i)}:  The coefficients of the equalizer at iteration ().

{#(9)}:  The coefficients of the equalizer at iteration (7).
At iteration (z): i=1,2,...

Step 1 Estimate adaptively the Lg,i)(m,n,l), ~M < m,n,0 < M, from finite length win-
dow of {y(k)} as described below. M should be sufficiently large so that L,(m,n,I) ~ 0
for |m|, |n|, [{| > M. Assuming that at iteration (0) we have received the time samples
{y(1),...y( Ilag)} we proceed as follows:

Stationary Case with Growing Rectangular Window

MO (m,n ) = (1= n(i) - M m,n, 1)+ 900 - 5(SHY(SE + m)y(Si+ n)y(Si+ 1) (:

ut
]
=
~—

RO(GY = (1= n(0))- RE=Dj) 4 0(i) - y(S3)y(S3 + 7) (5.25)
where, n(i) = ﬁa—é S} = min(i + Ilag,‘i + [lag - m,i+ [la.g -n,t+ [lag — 1), 8% = min(7 +
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Nt + flqe — J)- Finally substitucec (5.2:0) and (H.25) into (5.22) or {(5.23).
Nonstationary Case
First Way:

|

K ouse (5.24),(5.25) with n(i) = ———
Lt Il;lg,

fn s !

1/

for > A use (5.24),(5.25) with y(¢) = = fixed (H.20}

1 should have a small value (0 < 1 < 1), for example 5 = 0.01.
Second Way: (for symmetric L°- QAM signaling)
Since in this case the second-order moment £,(5) = 0, we can use M, (m, n.l) with a forgetting

factor w.0 < w < 1 as follows. (8§ is as before):

(4 flag)-.iyii)(r7z. nd)=w-(i— 1+[lag)-.'176“‘1)(m. n, )+ y(SDY(Si+ m)y(Si+r)y(Si+1) (5.27)

and substitute (1 + I5,) - ;1"1;"’(,”. n. 1) for [,gi)(rrz, n.l) everywhere.

Thnird Way:

Formulas (5.24) aud (5.23) could be used in nonstationary environments by reinitializing the
algorithm after certain number of iteration or when a channel change is detected,

Remarks:

. . 2\ ?
e By using the symmetry properties of fourth-order cumulants only i—'zj—”— cumulants need

to be calculated.

e The assumption that [ ., data have been received at iteration (0) avoids ill conditioaing

lag

of the matrices of the system given in Step 3. It causes a delay to Ilag at the input of the
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equalicer.

Step 2
Select p.q arbitrarily large so that 4D
=10

. very small constant)

AD ~0

BY) ~ 0

~ 0 and BY) ~ 0 for I > p and J > ¢. For example,

for I >p=int [log g}

for J>p=nt [log %] (5.28)

where. int-| denotes integer part and mazie;| < a < 1, maz|b]| < 3 < 1.

Define: w =mar(p.q).2< §,8< 2.
Step 3

Using the relation:

F
(I [ 7()

S {A LY m - 1 -

=1

1

Z{ (1)

J=1
with m = —w.....—=1,1..... w.n = -2z,
termined svstem of equations:

Py - ali)

whe  Fiois N, x (p+ q) (where )V,

PR 2t -
forr P00 v on ly = Lo r N aley

Lm+ILn+ Li+ D]} +

B [i,;”(m —Jn—Jl=J)=LP(m+ J,n,z)}} = —m-LP(m,n,1) (5.29)

..,0,...,8 to form the overde-

pli)  i=0,1,2.... (5.30)

2w x (22 + 1) x (2s + 1)) matrix with entries of the

= {‘-itf)’, .. .,fiit})), [}((xl)), .. .,Bf?))]r (T denotes transpose)
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is the (p + q) x 1 vector of unknown cepstral parameters; p(z) is the N, x 1 vector with entries

of the form {—m - Ly(m, n,0)}.

Step 4
Assume that initially @(0) = [0, ...,0]T. Update a(s) = [A(1),..., ./igf)’, B(1),..., B((f))]T as follows
a(i+1) = a(i)+ p1)- PHGEY - €(), (5.31)
éi+1) = p(i)~ P(i)-a(i), 0< p(i)<2/tr{P(i)- P(i)} (5.32)
Step 5
Calculate the equalizer normalized coeflicients. Initialize zim,(i,O) = 6iny(1,0) = 1 and the
estimate:
. 1Ly
tin (i, 6) = T Z;[A(i) ] tinu(i k= n + 1)
k=1,.... M (5.33)

1 n(l—-n - .
6,‘,-“,(1:,}6) = ’E Z [_Bg;l) )] . Oinv(lvk -n+ 1)
n=k+1

k=—1,...,—N2 (534)
where () is the iteration index taking values i = 1,2,3... Then,
Tinorm (7, k) = Tiny(1, k) % 0iny(3, k), k = =Nq,...,0,..., N (5.35)

where {*} denotes linear convolution.

Step 6
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Estimate the gain factor A(i) as follows: In step (1) we have already calculated:

£11(0,0,0) ~ 7, Z(f

M0y~ Q. }: (5.36)

where Q; = E{(z(k))*}, 7: = E{(r(k))*} - 3- Q2 are known. Also:

R | R .

ik) = ¢ .»x{j‘)“’-i(i,k—n+1), k=1,....p
1 o .

oik) = SOB Y ik -nt1), k=-1,...,q (5.37)
n=k+1

and f(i.k) = i(i, k)+6(i, k), {*} denotes convolution, Q ;(i) = T4 (f(i, k)% 7j(i) = Thlfi. k)"

Then (the sign of ;17_) cannot be identified):

For L-PAM Signaling:

For L*-QAM Signaling:

1. < 727 5(2) ) = ]t - eiT (5.39)
A()) 7~ \10,0,0)

£
N
o~
@
,-:’\;2
=N
ol
o]
N
\-—/
-

since v, < 0 for equi-probable L?-QAM signaling.
Step 7

Let, y(i) = [y(i + Na)s ooy y(i = NOIT and [Zpprn ()] = [inorm (i, =N2)o -« - ftnorm (i, N)JT . Fi-
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nally, the output of the TEA equalizer is:

.. 1 . . :
I(l) = m * [ﬂnorm(l)]T ) 3_/,(2) (540)

While most of the Bussgang blind equalization algorithms, which are based on non-MSE cost
function minimization, have not been shown to be globally convergent and cases of their mis-
convergence have been encountered, the TEA algorithm, designed as described above, is a more
reliable alternative, as it guarantees convergence.

Remarks:

1. Since Gaussian noise is suppressed in the fourth-order cumulant domain, the identification
of the channel response does not take into account the observation noise. Consequently,
the proposed equalizers work under the zero-forcing (ZF) constraint. For the same reason,
we expect that the identification of the channel will be satisfactory even in low signal to

noise (SNR) conditions.

2. The ability of the tricepstrum method to identify separately the maximum and minimum
phase components of the channel makes possible the design and implementation of different

equalization structures.

3. In the recursive formulas (5.37) we used the following properties that relate time impulse
responses with cepstrum coefficients: (i) a channel and its inverse have opposite in sign cep-
strum coefficients, (ii) the cepstrum coefficients of the convolution of two minimum phase or
two maximum phase sequences, arz equal to the sum of the corresponding cepstrum coeffi-

cients of the individual sequences and (iii) two finite impulse response (FIR) sequences with
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conjugate roots have also conjugate cepstrum coefficients. These become unique features

of the TEA equalizer when is compared with other equalization schemes.

4. The described algorithm is based only on the statistics of the received sequence {y(:)} and
does not take into account the decisions {Z{i)} at the output of the equalizer. Consequently
wrong decisions (and thus error propagation effects) do not affect the convergence of the

proposed equalization schemes.

5. Instead of using the LMS algorithm to solve adaptively the system of equations (5.30).
one may employ a Recursive Least-Squares (RLS) algorithm [25] which will have a faster

convergence at the expense of even more computations.

5.2.4 Power Cepstrum and Tricoherence Equalization Algorithm (POTEA) [7]
5.2.5 Relations of Power Cepstrum and Tricoherence of the Linear Filter Output

The problem is as formulated in Section 5.2.1, the channel output y() is the convolution of the
non-Gaussian i.i.d. random sequence z(i) with the channel impulse response f(i) plus some
noise. The cepstrum of the power spectrum of the channel output y(z), can be shown after some

algebra to be equal to [7].

lnlA'zl m =0
~L{A*tm 4 Bt™] m >0
ey, (m) = (5.41)

7—;—[:’1("") + B =™ m<o

otherwise

<
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where A% B(*) are the minimum and maximum phase cepstral coefficients of F{z). These are :

l- Ly
:\(k) = Z(Lf‘ —Z(‘f
=1 1=1
L
B = ST (5.42)
1=

where {a;} and {b;} are the zeros of F(z) inside and outside of the unit circle respectively.

Remarks:

1. A® | B() decay exponentially and thus their length can be truncated in practice at k = p.

so that AP B(P) are arbitrarily small.

2. If the channel F(z) has cepstral coefficients A B} jts inverse filter, ['(z),

has cepstral coefficients —A®), —B%*)_ It is also shown in [7] that if we define %) 2
A 4+ B*(®) and r,(k) 2 E{y(i+ k)y*(¥)} . then the following relations holds:
14 . P
Z 5'“"’[-—ry(m - k)] + Z .S"“{rﬂm + k)] = mry(m), m=1.---2p (5.13)
k=1 k=1

where p is some integer. the choice of which is discussed in [24]. Now let us consider the

cepstrum of the tricoherence.

1
Sy(z1. 22, 23) : :
Ry(zy.2505) = {—,—"_h--_ :—} (5.1
CHERMRE LI

It has been shown that the trispectrum of the received data satisfies:

Sy(f.’1 Pots N C;;) po ‘/1.]“.(:{_1 )I'.(:;g)l‘v'(l‘-:] )!‘.(:r’:;].}:] ) (;')V'(,',}
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Therefore,

F* iz (:f '(:7':’.':’l
Ry(z1,22.23) = _)i‘ e ('—' R (5.6
(M )[ )I (r2azy)
After some algebra, we obtain
{n]. 4y} m=0.n=0,{=0
__;1_1[‘_1‘(771.) _ B(Hl)] m>0.n = D.l =10
~Lgtm o gt om0 = 0.0= 0
~ 1[40~ B(m)] m=0.n>0.0:<0
1 —%[A‘(*”) ~-B"M m=0.n>00=0
Ry(m,n,l) = 5 (5.47)
B %[A‘(m) — B m=n=101>0
Ligl=m) - pr{=m)] m=n=1{<0
% 4= B)] m=0,n=0,[>0
—%[A"“") — B‘(“""] m=0,n=0,{<0
{ 0 otherwise
Taking the logarithm of both sides of (5.4:1), we obtain,
1 -1 - -
Ry(.'i’l,:g,:g): §[ln9y(: 1, 3)~lllqy\ A ,..,l,..\jl) ().'1‘\’»
Differentiating with respect to Z; and performing inverse Z-transform. we obtain
2L,(m,n, )+ L (~m.—n, =)+ [-mR,(m.n,l)]
= Ly(~=m,—n, =)« [-mLy(m.n D]+ Ly(m.n. D)« [mL(m.n.1)] (5.9




By defining the following functions:

8,(m,n,l) 2 L(=m,—n, =)« [ (m.nl)

8,(m.n,l)

Ly(-m,~n,~l)yeml,(m,nl) (7.50)

are combining (5.49) and (5.50), we obtain:

201 (m,n, )« [mRy(m,n, )] = 0,(m,n, 1)+ 05(—m, —n, ~{) (5.

N1
NS
—_—

Defining D) = A®*) — B=(¥) and combining (5.47). we obtain:

P
ST D WG (m~ kon -k~ k)= 6;(m — k.n.D)
k—=1

P
+ Z D®NG (m+k.n+ k. L+ k) =0 (m+ k.n.D)

k—=1
= Oy(m,n.l) + 63(—-m, —n, 1) (5.52)
A rule of thumb is to define w = p, z < w/2, h < z and then take m = —w, ..., —=1.1..... w. o=
—z,...2, l = —=h,...,h to form a linear overdetermined system to equations.

5.3 The POTEA Algorithm

In this section the POTEA algorithm is given in detail.

Let

Ny, Nj3: Lengths of minimum and maximum phase components of the equalizer.
p: Length minimum and maximum phase cepstral parameters,

At iteration ¢ = 1,2,....
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Step 1 Estimate adaptively the l,gn(m.n,l) for =My < mon,l < My and rf,”(m) for — A, <

m < Ms from a finite length window of {y(n)}, and then generate the following functions:

9&“(771.7},1) = L;(‘)(—m,—n,—t')*1,21'}(171.7?,1)
O.Ei)({zt,rz,l) = L;(‘)(~m,——n,-—[;* m/‘f/‘?(m.n,l)
Step 2 Choose p arbitrarily such that APt ~ 0 Bt = 0 and define o= opooo 00D

Step 3 Form the equations

4 P
Z S*EN—ry(m — k)] + Z S®,(m 4+ B = mrymede mo= 1,2 (5.93)
k=1 k=1

where S%) = AK) 4 B=(K) k= 1,...,p.

P
ST DR[O (m — kyn = k1= k) = 0i(m = k,n. 1]
k=1

14
+3 " DW[6 (m + k,n+ kil + k) - 6yim + konD)]
k=1

= Gy(m,n, )+ 03(—m.,—-n.~1) {(5.54)
and the following system ol equations

P& = ]3 Lo

(Q»
o~
i

=

(_..)_,—)hl)

where the matrices P.a.p.Q.b and § are defined above.
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Step 4 Solve adaptively the above systems employing LMS-type adaptation as follows:

a(i+1) = a(i)+ p()PY()e()

bi+1) = b(i)+u'()QM (1))

where

i 2
0 < )< i
0 < pJ(¥)< 2

g (G70)

The algorithm at instant : minimizes the mean square error:

~

J(i)

i

E{e"(1)e(i)}

HOREERACHOL0)

Step 5 Calculate A®) and B(® as follows:

Step 6 Calculate

k+1

- . 1 n=1}n .

begli k) = 2 YA (k= n b 1)k = 1 Ny
n=2
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. 1 & ).
bealih) = 2 Z Bf}) Noeg(iyk=n+1),k=—1,...,- N, (5.61)
n=k+

with initialization : 1eq(i,0) = 6¢4(4,0) = 1. The normalized (A = 1) estimate Lnorm (2, k)

at iteration (i) is given by:
inorm (1, k) = Teg(1, k) * beq(i, k) (5.62)

Step 7 Estimate gain factor A(i)

Step 8 The reconstructed transmitted sequence at iteration(s) is:

z(i) = }__: Unorm (1, k)y(i — k) (5.63)

A(z) k=

Computational Complexity
In this section the computational complexity of POTEA is presented and compared with the

computational complexity of TEA.

PAM

POTEA: 3GM+1E 4 3(9M 1 1)+ 2p(N, + p + 1) + 2248YE3 | (4M)3log, 4M

TEA: 2031 4 320 + 1) + (p+ q)(2N, + 1) + 2E48NE2
QAM

POTEA: 4[22M+1° 4 9201 + 1) + 2p(2N, + 4p + 2) + MABNE3 4 (401)3og, 4 M]

3 7
TEA: 4{CME 4 (51 q)(2N, + 1) + M48N43)
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5.4 Cross-Tricepstrum Equalization Algorithm (CTEA) (8]
5.4.1 Problem Formulations

Assume we have n measurements at each time index k, y:{k),i = 1,2,...n, where

yi(k) = fi(k) x z(k) + ni(k) (5.64)

(shown in Figure 5.1 for n = 4) and
1. fi(k) is the impulse response of a discrete time linear time invariant system,
2. z(k) is a non-Gaussian, nth order white process with cumulant v, # 0,

3. ni(k) is zero-mean additive noise, with n;(k) independent of n;(k) for ¢ # j and indeperdent

of z(k). No assumptions are made about pdf for whiteness (in time) of n;{k).

We also assume that each impulse response h;(k) is stable with no zeros on the unit circle and

that its Z transform F;(z) can be written as 8]

Fi(2) = Aili(z71)0(2) (5.65)

where the A; are gain coustants, the r; are integer linear phase factors,

L, i
HJ;:(] —a;;271)

1._‘(3_1) =
41— cij=1)

is the minimum phase component and

Lt?

O,‘(Z) = H(l - b,-jz)

i=1

63




is the maximum phase component, with zeros a;; and poles ¢;; inside and zeios b;; outside the
unit circle (i.e. Ja;;| < 1,]b;5] < 1, and {ei5] < 1).
5.4.2 Relation of Cross-Tricepstrum of the Linear Filter Qutput

With the above assumptions, the nth-order cross-spectrum of the y;(k) can be written as

n-1
Sy,1,2,...,n(zla 225000, zn—l) = 71:F1(31)F2(z2) e 'Fn—l(zn—l )Fn( H :,'—1) (5-66)

=1

Taking the logarithm and performing inverse Z-transform on both sides, we obtain after some

algebra the following results:

Invy, my=my=...=Mu_1 =0,

—(l/m,)A,(m,) m; > 07 m; = 01] < i’

(1/mi)Bi(-m;) m; < 0,m; =0,7 # 1,
Cy,1,2,n (M1, Moy ooy Mpy) = (5.67)

1=1,2,...,n-1,

—(1/mp)An(-my,) my=me=...=m,u_; <0,
—(l/mn)Bn(mn) mi =My =...= Muy_] > 0,
0 otherwise
\
with
L13 LM
Aik) =3 () =Y ()t
j:l j:l
P
Bi(k) = > (b~ (5.68)
=1
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This results means that the n-th order cross-cepstrum is non-zero on n lines oaly in iis domain
and that on each of these lines we find the complex cepstrum of a zero-linear phase, scaled versior
of one of the n impulse responses.

Now, to develop a least squares solution for the A; and B;, we take first partial derivatives of
the logarithm of (5.66), independently with respect to each of its variables, followed by inverse
Z transforms. Letting Sy12,..n(m1,m2,...,my_1) denote the n-th order cross cumulants of the

y;i. we get the following n — 1 equations relating the cross cumulants to the cepstral coefficients:

Sy,;,?,...n(ml’ Mo, ..., mn) * (mi Cy,1,2,...,n(mlv ma,..., mn—l))

= —-my Sy.l,2,...n(m1a Moy ...y mn—l)

for ¢ == 1,2,...n — 1. Each equations involves an (n — 1) dimensional convolution. However,

plugging in (5.67) reduces each equation to a single finite summation:

[s o}
Z Ai(k)Syi2..n(tista, . oytnoy) — Bi(k)Sy 12, U1, u2,. . ., Un—1)
k=1

—An(k)sy,l‘Z,...,n(mi + k» mg + k’ vy My + k)

+Bn(k)Sy'1,2‘m_n(mi - k, my — IC, vy My — k)

= —m;Sy1.2,..n(M1, My, ..., Mp_1) (5.69)
where
t;, = m;—k
U, = m;+k
t, = u;=m; JF1
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From equation (5.68) the sums in (5.69) decay, so we can truncate them to pi and ¢; for
the terms involving A; and B, respectively (see [8]) and rewrite (5.69) as a finite dimensional

vector dot product equation. Writing M > p, + ¢; + pa + ¢ equations at M points in the n — 1

Rin-Ci = (5.70)

5.4.3 Cross-TEA (CTEA) Algorithm

In this section we describe the CTEA algorithm for blind equalization of QAM signals with four

receivers. The algorithm has two stages at each iteration:
1. Channel identification and deconvolution
2. Combining by use of a decision rule

Channel Identification and Deconvolution

Step 1. Estimate the cross-cumulants and kurtoses of the received data recursively.

Step 2. Form the systems of equations (5.70) and solve each system in turn to get the cepstral

coefficients for each channel!

Step 3. From the results of the previous step, estimate the forward and inverse channel impulse

responses up to a desired length.

Step 4. From the estimated forward impulse response and the kurtoses, estimate the gains Afj ) for

~ each channel.

!The cepstral coefficients for channel four can be estimated from the solution of one of the three systems or an ~
average of all three.
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Step 5. With the estimated inverse response, f,.(ﬁw(k), and the estimated gain for each chinnel,

deconvolve to estimate the input symbol as

1

S 3y = ol 3 (SIS
rl(]) - _4‘j)yl(J)* fi,inV(k)

Combining Decision Rules

As illustrated in Figure 5.1, from the four estimates ;(j) we need to form a single quantized
decisions £(j). We describe here an optimal combining rule in the case of a perfect equalizer, as
well as three sub-optimal schemes, arithmetic mean, majority rule, and median (which forn = 4
channels is equivalent to o-trimmed mean with a = 1).

Optimal Decision for the Perfect Equalizer [8]

We consider the following assumptions:
1. z(k) is complex and uniformly distributed,
2. u;(k) is the perfect equalizer for fi(k), i.e. fi(k)* u;(k) = 6(k), and

3. n;(k) are zero-mean, complex Gaussian variables with known variance o? and are indepen-

dent across channels.,

Since we will do symbol by symbol detection, e will drop the time index k for simplicity. With
these assumptions,

fa) -
I; =T+ n*u; =+ n,;.

Therefore, the conditional probability density of & given X, p(Z[z), is complex Gaussian with

mean r and variance

6% =0y |ui(k)[%
k
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Since the noise in each channel is independent, the maximum likelihood estimate £ of & given

the four observations F; (assunming r to be from a continuous distribution) is

I[{ = '}
2.0,
- — .
Li'[ — %Zt (rx Ti1
3ot

where the subscript R and I denote real and imaginary parts respectively. Note that if the noise
has the same variance in all channels then this result reduces to the arithmetic man. If. on the
other hand. we assume that z belongs to a known discrete set D then we need to find £ € D
which satisfies

-2

min Y 7%, — &
IED =

or equivalently

min &i—z (|i|2 - 2{Zpz;r + 51571',1)) .
Z€D :

Of course the assumptions of perfect equalization and known noise variance are not realistic in
practice so we describe below three sub-optimal combining rules which we tested in our simula-

tions.

Arithmetic Mean

Step 1. Form a soft decision statistic
4

im=i;hm-

(If information is available about the relative quality of the channels then a weighted mean

could be used.)
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Step 2. Put Z(j) through a decision device to get 2(j).
Majority Rule

Step 1. Put each estimate through a decision device to form four decision statistics Zi(7).

Step 2. If there is a plurality among the #,(7) in one region of the decision space then that is the
decision. If there is a tie ( all four different or two votes for each of two decisions) use
a tie-breaking procedure. One method would be to pick the decision region that has the

smallest average squared decision error. For example, if £,(j) = 22(7) # 23(J) = Z4(7):

2
Let dy = Y |&(5)— &)

=1

4
Let dp = Y |&:(5) - &)

1=3

Then

Choose 1,(j) di <d;

iz(]) d2 > dl.

Median

Step 1. Order the real and imaginary parts of the z,(j) separately.
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Step 2. Set

REAL{2#(j)} = median{REAL{Z;(j)}}

IMAG{#(j)} = median{IMAG{#(j)}}

Step 3. Put Z(j) through the decision to get £(j).

5.5 Computer Simulations

Computer simulations has been employed to compare the performance of the blind equalization
algorithms. The performance metric used are those in Sections 2. And the following issues are

addressed.

5.5.1 TEA vs. Bussgang-type Algorithms

Fig. 5.2-5.4 show the performance of the TEA algorithm, compared with that of Bussgang-
type algorithms, such as Godard, Benveniste-Goursat. Stop-and-Go algorithms. We see that the
TEA algorithm opens the eye much faster than the Bussgang-type algorithms. This performance

improvement is achieved at the expense of larger computational complexity.

5.5.2 POTEA vs. TEA

Fig. 5.5-5.6 show the performance of the POTEA algorithin, compared with that of TEA. We
see that the POTEA algorithm converges faster than the TEA algorithm. The performance

improvement is achieved at the expense of further increase in computational complexity.
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5.5.3 CTEA vs. TEA

Fig. 5.7-5.8 show the performance of the CTEA algorithm compared with that of TEA algorithm.
We see that the CTEA algorithm converges faster than the TEA algorithm for some channels.
The performance improvement is achieved at the expense of further increase in computational

complexity.

6 ALGORITHM WITH NONLINEARITY INSIDE THE EQUAL-

IZATION FILTER

Still another class of bind equalization algorithms are these algorithins which use Volterra filters
[9], [10] or neural networks {20], [26], [27]. This class of algorithms perform nonlinear operations
inside the equalization filter. It is therefore also be able to correctly extract the phase information
of the unknown channel from its output only. In this section, we will concentrate on those

algorithms based on neural network.

6.1 Review of Equalization Techniques Based on Neural Networks

Equalization is a technique which is used to combat the intersymbol interference caused by non-
ideal channels. Usually, equalizers are implemented using linear transversal filters [17], [18], [30],
[31]. However, when the unknown channel has deep spectral nulls or some severe nonlinear
distortions, such as phase jitter and frequency offset, linear equalizers are not powerful enough
to compensate all of these. That is why nonlinear filters, such as those implemented by Volterra
filter or neural network, come in and play an important role.

Neural Networks {(NNWs) are mathematical models of theorized mind and brain activities.

The fundamental idea of NNWs is to organize many simple identical processing elements into

71




layers to perform more sophisticated tasks. The properties of NNWs include: massive paral-
lelism; high computation rates; great capability for non-linear problems, continuous adaptation;
inherent fault tolerance and ease for VLSI implementation, etc. All these properties make NNWs
attractive to various applications. Several neural network based algorithms have been proposed

for equalization problems.

1 Multi-Layer Perceptron
The multi-layer Perceptron (MLP) [39], [40] is one of the most widely used implementations
of NNWs. It comprises a number of nodes which are arranged in layers, as shown in Figure
6.1. A node receives a number of inputs 1,25, -, Z,, which are then multiplied by a set
of weights wy, wy, -+, w, and the resultant values are summed up. A constant v is added
to this weighted sum of inputs, known as the node threshold, and the output of the node
is obtained by evaluating a nonlinear (sigmoid) function, f(.), which is called activation

function.

The architecture of a perceptron can be described by a sequence of integers ng, na, - - -, nk.
where ng is the dimension of the input to the network, and the number of nodes in each
successive layer, ordered from input to output, is ny,n2,---,nt. In this notation, the MLP

produces a nonlinear mapping g = R™ — R"*.

The updating of the connection coefficients of the MLP is done iteratively by using back-

propagation (BP) algorithm with the following formula:

(Wigr, vig1) = (wi,vi) + A4 (6.1)
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and

l,'l
Ay= (o) = «
d{w,,v;)

oAy (6.2)

2 Self-Organizing Feature Maps

The topology by self-organizing feature map (SOM), which is introduced by Kohonen [26],
[27] consists of two layers of nodes, referred to as input layer and output layer, which are
fully connected with different connection weights. The inputs to the SOM can be any
continuous values, whereas each of the output-layer node represent a pattern class that the

input vector may belong to. That means the outputs of SOMs are discrete values, and

therefore, the SOM is sometimes also referred to as learning vector quantizer.

The SOM works iteratively as follows. First, find the set of connection coefficients W

which is the closest to the input vector Ag,
. F .
I Ak = W, ll= win ) 4 = W 1] (6.3)

Second, perform the following quantization of the output-layer node:

1, if || Ak = Wy [l= min || Ax — W; ||
by = (6.4)

0, otherwise.

and then move W, closer to A using the equation

a(k)-[af = W], j=g

AvViJ = B(k)- [a* — W”,‘j], JENLITHg (6.5)

Ly

0. JE€ Ny,




where N, is the topological neighborhood of the winning node b, which consists b, itself
and its direct neighbors up to the depth 1.2,---, and a(k) and 3(k) are the learning rate

at time k.

6.2 The MLPs Equalization Algorithm for PAM and QAM Signals

The applications of MLP in equalization problems so far. have been limited to binary {0,1} or
bipolar {—1.1} valued data and real valued channel models {11}, [20], [49]. In this section, we
introduce for the first time a new implementation structure of MLP which works well with
L-PAM (L > 2) and N-QAM (N;4) signals.

Looking into a MLP structure, we find out that it is the sigmoid function of the output
laver nodes that confines the network outputs to the range [—!,1]. In our equalization problem,
the signals are equally spaced and symmetric with respect to either the original point of the
coordinate, or to the z and y axes. Thus we can just scale up the node function of the
output layer by a constant factor C which is large enough to cover our maximum
signal range, e.g., [-15,15] for 16-PAM or 256-QAM! signals. So, for the output laver, we have

[30], [40]

l_eOI.‘L‘

f;’\](l‘) =C- 1+€a1.7

(e21) (6.6)

as the activation function. For the hidden layers. we still use the sigmoid function

1_601“

filz) = 13 s

The idea of adding another constant a comes form the thought that a smaller a. equivalently,

a lower slope in Figure 6.2, would avoid high vibration, and in turn. decrease the chance of
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divergence in the course of weight adjustment.

For complex channel models and QAM signals, we use complex connection coefficients to
get the weighted sum to which a compiex threshold is added. Then the sigmoid functions of
the real and the imaginary parts of the threshold added weighted sum are evaluated separately.
Again, for the output layer nodes. the outputs are multiplied by a constant C'. Using the steepest
descent formula (Eq. 6.1, 6.2). we get the adaptation algorithm of our new MLP equalizer which
is described in Table 6.1 [30], [40].

Simulation are conducted to examine the performance of MLP eqnalizers. The equalizer is
implemented by the new MLP structure with only one output node. The input data to the
system z; are assumed to be independent of each other. The delayed input sequence z,_;. where
d is channel dependent, is used as the training sequence. The performance of MLP equalizers is
evaluated by calculating the mean square error (MSE) Ef(z — 5:)2] and the average symbol error
rate (SER) of the quantizer output. The eye pattern of equalizer outputs around certain number
of iterations is shown in Figure 6.3.

Figure 6.4 illustrates the performance comparison between MLP and LMS-based linear transver-
sa}l equalizer with the same number of inputs. The structure (the number of nodes in the hidden
layer) of the MLP has been hne-tuned througl experiment. The step size p of the LMS-based
equalizer is also optimized (the biggest value without causing divergence). From Fig. 6, it ap-
pears that the new structure of MLP works no much better. as a channel equalizer. than the

simple linear adaptive equalizer. As a matter of fact, both methods end giving similar results.
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7 CONCLUSIONS

The purpose of this paper is to provide a tutorial review of existing blind equalization algorithms
for digital communications. Three farilies of techniques have been described, namely, the Buss-
gang techniques, the polyspectra-based techniques, and methods based on nonlinear equalization
filters or neural networks. The complexity of the Bussgang techniques is approximately 2.V mul-
tiplications per iteration, where N is the order of the linear equalization filter. On the other
hand, the polyspectra-based techniques require approximately %;\'3 multiplications per iteration.
However. as it has been demonstrated in the paper, the polyspectra-based techniques achieve
significantly faster convergence rate than the Bussgang techniques. Finally, it is pointed out in
the paper that blind equalizers based on nonlirear filters or neural netwoiks are better suited for

equalization of channels with nonlinear distortions.
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Table 4.1 Nonlinear Functions of Bussgang lterative Techniques.
u(z) = [ug, (), un ()T equalizer taps
y() =[p(@),--- yi -V + n* input to the equalizer block of data
At iteration{i}, ¢ =1,2,---
£(i) = w1 (i) y(i)
e(i) = gVE()] - 2(3)

u(i+ 1) = u(é) + p y(3) e™(d)

Algorithm Nonlinear function: g[Z(i)] =

LMS

training z(1) (linear)

mode

Decision

Directed z(2)

Mode

Sato "y csgn [£(i)]

Benveniste- (1) + ky (2(2) — 2(2)) + k2|2(2) — 2(3)]
Goursat (v csgu[z(d)] - (%))
Godard B - {120 + RplZ()PY — J2(3)*P~1 )
p,g=2

Stop-and-Go (1) + 1A (2(3) - 2(3)) + 1 B(3(3) - ()"

(A.B) = (2.0), (1,1), (1,-1) or (0,0), depending
on the signs of DD and Sato errors
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Table 4.2

Comparison of Computational Complexity

CRIMNO Adaptive Weight CRIMNO
Godard (memory size M) (memory size M)
Version | Version 11 Version |
Real Multiplication | 4N+5 | 4N4+8M+5 | MN+8M+4N+5 4N+10M+5
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1).

2).

3).

4).

Table 6.1 Complex MLP adaptation algorithm.

Assign small random complex numbers to all the connections and
thresholds.

Forward propagate inputs through the network:

ny
- _ . i Y | . -Q
aip1,j = Z Gil - Wip;+ Vi = Gigy;+ 707, 5,
=1
- -7 . Q-
Git1; = f(“.'+1,j) +7- f(ai+1,_j)v

where ¢+ = 1,---M (M is the number of layers), f(-) is the sigmoid
function, and get the output,

T =C-arn.

Present the training signal to find the output error,

ém = el [L= (@1 /CP] JC + jey 1 - (29707 /€
where €A = 254 — z.
Find the backpropagation error,

&=l [L— ()] +5-€d - (1= (a2)7),

i =13

where
Nyl

€;= E Wil €y l-
=1

. Adjust connections and thresholds:

wijk(n+1) = wi;u(n) + 08y ;(n) - ai;(n),
vi;(n + 1) = vi5(n) + B - &;(n).

where “x” denotes conjugate operator. The momentum term can also
be added.

. Back to Step 2.
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Figure 4.3 MS Estimate Under Laplace Distribution
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Figure 4.5 MAP Estimate Under Laplace Distribution

95




AMSE (dB)

AMSE (dB)

Figure 4.6

-8

-10
0

Godard(sz1)

Godard(sz2)

Godard(sz3)

1.6 1.8 2
Number of iteration
x104

Godard(sz3)‘

1.6 1.8 2
Number of iteration
x104

04 0.6 0.8

(b)
Comparison of the adaptive weight CRIMNO algorithm (szl) with Godard’s

algorithm of different step-size (sz3 is the optimum step-size): (a) the real
charnel; () the synthetic channel.

96




MS Error (dB)

SER

0.3

0.7

0.6

0.5

0.4

03

0.2

0.1

AWC: Adaptive Weight CRIMNO I

Godard 2

AWC(M=2)

AWC(M=4)

AWC(M=6) S

0.2 0.4 0.6 0.8 1 12 14 1.6 1.8 2

Number of iteration
(a) x104

T

- ] AWC: Adaptive Weight CRIMNOT 1
Godard

----- —  AWC(M=2) 7

AWC(M=4) i,:::,-,'.; I _\__'___j—

1
H ; : |,
limimn : ) 1 -
: ]
]

.............

AWCM=6) - T

0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
Number of iteration

®) x104

97




ISI

0.1 7 T T L

0.09} ]
“ AWC: Adaptive Weight CRIMNO I
0.08
0.07} 3
0.06}
0.05+
0.04
0.03+
0.021 AWCM=A) —omme—e
001} AWC(M=6) M
O i 1 L 1 1 1 i L L~
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Number of iteration
© x104

Figure 4.7 Effect of memory size M on the adaptive weight CRIMNO algorithm:
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98




ity Ay & el S0
R cre 5% W N '.L\u;_."

Rt RAP et

-10 0 10
© (d)

Figure 4.8 Eye pattern of adaptive weight CRIMNO algorithms with different memory size
M at iteration 20000. (a) Godard; (b) Adaptive weight CRIMNO (M=2); (c)
Adaptive weight CRIMNO (M =4); (d) Adaptive weight CRIMNO (M=6).

99




Yi

X
D) ——-Jz

nj

Combination
and

/ Decision
Rule

uy

Ya

X

/

Figure 5.1 Diagram of four parallel equalized systems with additive noise.

100




Stop & Qo

E
2

SNR=30db
Chn-G201
T/2 spaced
é=5.E-06

[}
1
L4

2CCO pta

U JEPRPUNPUI U SIS S SRR S S

o

EYE PATTERN at 10000

10 T - y
g do
*%#ix@@ui”“
i
;
!

P RN T Dl
b e A e e e 3 Y Al
YT L E LT
RS X% L R

SNR«30db
Chn-Q201
T/2 spaced
§=56.E-05

Lo % N ow
—w PR R R L R CE W
st e g oW R A W

i a=8.

{ 2000 pta.

|
-10 ~ —
-0 -5 0 5 10

EYE PATTERN at 15000

Au.i‘

& 1 G20l chan.
31 taps
2000 pts

10

{ CMA p=| qu=¢

! 1/2 chan

QAM-84

SNR=30db

d=1.E-8

. ‘ G201 chan.
31 tape

2000 pts

-10 -5

5 10
Eye pattern at 15000

Figure 5.2 Channel G201 with QAM-64: Stop-and-Go and CMA (p=1, q=2) algorithms.

101




. «-'(
S ;3’:""%’ ":‘:‘A} « M&q GODARD
S \f"‘ XX %«J &'

S

.

' ~ Ta W‘dx

*L;ﬁ,, 5, "-,f‘f*”:‘}% T oas-oe
i“‘-'?dm’v :,,,%’vmz g‘*’g Ml“j INR=30db

: ‘}‘) \'} 6=t E-8
el WM
t’«fg‘ &:V.bfm G201 chan
-5 Kk

\“*“ ~ 1 T/2 Chan.

-10 -5 0 S 10
Eye pattern at 10000

—
o

|
n

" < ¥ < 31 tape
e i 1o o AR
T aat

-
F GODARD
~ ; /2 Chan
7 ‘E QAM-84
b INR=30db
Q sw ) E-8
G201 chan.
31 tape
-5 2000 pt»
-10 -
-10 ) 0 S5 10
Tye patteri. ot 40000
10 ; 1
L CODARD
b “é B Sl &@" , T/2 Chan
sr »«%QMW R
: L L LI
- - - -
ot "’(Q%B“{”;%W :ge1E-8
[ ”ﬁ e ”; o i Q201 chan.
P PR R GE A
[ )
[
‘ A
»

}
Q

|
(@]

-5 0 5 10
Eye pattern at 80000

: M, GODARD
*"{ T/2 Chan.
. :‘3 CAM~84
= > INR=30db
" e 4 4=1E-8
3 . -‘; G203 chean
: X ot Rl :i:” tape
- Ko e SR 14 2000 pus
S Fan e
-10 U - e
-10 -5 0 S 10
Eye pattern at 15000
10 j
r GODARD
L ﬁw ,@M }
' b { T/2 Chan
St W“@”W* 7 anise
: 1 SNR=30d4d
o < x j sel.E-8
1 N 4201 chan
. '&M‘ %Mﬁkﬂ } 3t tape
[
-10 !
-10 -5 0 5 10
Eve pattern at 70000
10
- GODARD
L g*’-‘ﬂ )% Q&* 1 T/2 Chan.
SRl i E LT -
E )‘“* %&%x‘ * J SNR=30dd
of WhEREFaT T
E *wi&x Nﬁ i G201 chan
[ %&,ﬁﬁ = *;“ﬁx ! 31 taps
_sr M“*&&“* %20009!.'
f S 0 e N e
_10 L
-10 -5 0 5 10

Eye pattern at 90000

Figure 3.3 Channel G201 with QAM-64: Godard algonthms.




TRICZI=STAUM .G,
JINESR 250 mzi
SHNL 001 123
2a-GANL -

9.00

<
[ow]
[o2)

3.00

~3.00
) U G NV SNV UUPRE WSS W W |

.

o
<
=)

-3.0C )

y - 3.00 3.00
EYE 10000

= o
S S
] - 2]

<., : 4 B

TR | e

RS I

ALY JT o g
gJ' S .‘4 gj t

> cp- MR, a - ~
| _\f' )-" 1,,; ..s'-‘-"- ; ™! :?.

ek mni 6

oS . -
-,

5] 3] ¥
7 %

1 | [ S

! 1

.

g ] ; S 7
o | y @ |

-‘9 a0 -3.08 3.00 3.00 -9.00C -3.00 3.00 3.00

EYE R . 4000 ZYE KT (8000

Figure 5.4 Channel G201 with QAM-64: TEA algorithms.

103




POTEA £404AM . TEA £4-0AM

10 EXAMPLES 0
\ ;
E | = |
B 1 4 .
| 2 |
] '1 w1 _5: J
| J
| P ;
-10¢
10 -10 0 10
3000 ITERATIONS
|
!
i
7
|
f
-10 0 10
6000 ITERATIONS 6000 ITERATIONS
10
5 b -
ok 4
5k -
-10
-10 0 10
10
-10
-10
12000 ITERATIONS 12000 ITERATIONS

Figure 5.5 Eye-patterns of the Godard algorithm vs. those of the TEA algorithm.

104




WPUeI R YALL oY yirm wipuode v LOd 241 Jo uosurduwios dsuewiojidd  9°g aundyyg

(1 X yOIX
C - | () | §0
‘ sre=rne 0 . ! T
T e ,_.A_E /\(f//x\%k/z
L _3. r. 20 n/\,\;;l)/. ﬁ_/\mv\ax_
- VAL g 8
L A N °
: 190 & | <u,r Ny
~ 1
, qap 0p=UNS 180 , 1P OP=3NS ,r
WVO-96¢ _ z<o-omm_
- ¢TIdNVXA _ € A TdNVXA
01X SNOLLVYA.LI 4O d4dNNN
z 81 9 A A I X)) 90 0 0

(P Ob=dNS
WVO-9ST

m meZx\Xn_

(dp) ISI

(gP) ISIN

105



Cross-TEA 3500 ITERATIONS TEA

st | ] sk

0_ .
S+ . -
0
Channel 1
s | ] s '
Or 5 o
Sk . 8 -5k
0
Channel 2
5,_ T ] 5‘ T
0r . or
Stk ) 4 -5— .
0 0
Channel 3
st o . 5 -
of - o
St . - -5t
0
Channel 4

Figure 5.7 Eye Diagrams ror CTEA and TEA at 3500 iterations..

106




20

%0 1000 2000 3000

0.6 —= __CHANNEL 1 _

04— oo ]
02}

00 1000 2000 3000

0.6 __CHANNEL3

0.4 -
02f |
om0

CHANNEL 1

1

1000

2000

3000

CHANNEL 3

20

T

__CHANNEL?2

0 L 1 Mt
0 1000 2000 3000 4000
__CHANNEL 4
20} ]
0 ’ . 1 |
0 1000 2000 3000 4000
MSE
0.6 __CHANNEL 2
0.4t |
0.2F .
0 —jl--m' _:__ e N
0 1000 2000 3000 4000
0.6 __CHANNEL 4
04} ]
0 1 1 N
0 1000 2000 3000 4000
SER

Figure 5.8 MSE and SER plots for all four channels, CTEA vs. TEA.

107




MOMENTS, CUMULANTS AND SOME APPLICATIONS TO
STATIONARY RANDOM PROCESSES

BY DAVID R. BRILLINGER*
University of California, Berkeley

The paper ranges over some basic ideas concerming moments and
cumulants, focusing on the case of random processes. Uses of moments
and cumulants in developing large sample approximate distributions, in
system identification and in inferring causal connections of a network of

point processes are presented.

1. Introduction. Moments and cumulants find many uses in main
stream statistics generally and with random processes particularly.
Moments reflect the parameters of distributions and hence, as via the
method of moments, may be used to estimate distributional parameters.
Moments may be employed to develop approximations to the statistical
distributions of quantities, such as sums in central limit theorems and asso-
ciated expansions. Moments may be used to study the independence of
variates. Moments unify diverse random processes, such as point
processes and random fields, and diverse domains, such as the line or

space-time.

2. Ordinary case. One can begin by asking: What is a moment? To

provide an answer to this question, consider the case of the 0—1 valued

*Research partially supported by NSF Grant DMS-8900613
AMS 1980 subject classifications. Primary 62M10, 62M99.

Key words and phrases. Coherence, cumulant, moment, partial coherence, point pro-
cess, systen: identification, time series.




variates X, Y, Z. For these vanates
E{XYZ} = Prob{X =1,Y =1,Z =1}

This provides an interpretation for a (third-order) moment in terms of a
quantity having a primitive existence, namely a probability. Higher-order
moments have a similar interpretation. One can proceed to general ran-
dom variables, by noting that these may be approximated by step (or sim-
ple) functions, see eg. Feller (1966), page 107.

Next one can ask: What is a cumulant? One answer is to say that it
is a combination of moments that vanishes when some subset of the vari-
ates is independent of the others. Suppose for example that X is indepen-

dent of (Y, Z). The third order joint cumulant may be defined by

cumi{X,Y,Z}) = (1)

E{(XYZ} -E{(X}E{YZ}-E{(Y)E(XZ) -E{Z}E{(XY)} +2E(X)E(Y)E{Z)
By substitution one quickly sees that this last expression vanishes in the
case that X is independent of (Y, Z).

Expresion (1) gives one definition of a joint cumulant. An alternate
way to proceed is to state that that cumulant is given by the coefficient of

i3aBy in the Taylor expansion of

lOg[E {ei(0X+BY+‘YZ)]]

supposing one exists.

Taking the log here converts factorizations into additivities and one sees

immediately why the joint cumulants vanish in the case of independence.

Streitberg (1990) sets down a sequence of conditions that actually

characterize a cumulant. These are:

1. Symmetry
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cum{X;,X,, -} =cum{X,, X, -}
2. Multilinearity

. cum {0X |, X,, * -} =acum{X |, X5, -}

cum {X +Y [, X5, -~} =cum{Xy, -} +cum{Y,, ---}
3. Moment property, if the moments of X and Y are identical up to order
k

cum {X} = cum {Y}
4. Normalization, in the expansion in terms of moments
Cum{Xl, e ’Xk} =E{X1 ce Xk] + -
5. Interaction, if a subset is independent of the remainder
cum{X,, -+ X, } =0

Cumulants provide a measure of Gaussianity. If the variate X is nor-

mal, then
cum (X} =0 2)

for k >2. (Here cum, denotes the joint cumulant of X with itself k
times.) Putting (2) together with the fact that the normal distribution is
determined by its moments, provides a particularly brief proof of the cen-
tral limit theorem. Namely suppose that X,, X,, --- are independent
and identically distributed with E{X } =0 and var{X} = 1. Suppose all

moments exist for X. Consider

S, =X+ - + X )\n 3)
Then
k
cumy {S,} = n cum, {X) / n?
- which tends to O for k > 2, as n tends to infinity, and in consequence S,

has a limiting normal distribution.
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An error bound may be given for the degree of approximation of the
distribution of a random variable by a normal, via bounds on the cumu-
lants. In Rudzkis et al. (1978) the following result is developed. Con-

sider a variate Y with mean 0 and variance 1. Suppose that

H (k! 14+v
lcum (Y} | S——(Ak-—zz—
for some v 20, H 2 1, then in the interval 0 < u < &/H

suplProb{Y <u} - @)l < l—iH—
u

where

71 6

— Y U(1+2v)
s_ 1 [\le} Y
In the case of a sum, such as (3), one can take A = n for example.

3. Time series case. -Consider a stationary time series X (¢) with
domain ¢t =0, 1,+2, ---. If the k—th moment exists, from the sta-

tionarity, the moment function

E{X(t+u 1) s X(t+uk_1)X(t)]
will not depend on ¢, nor will the associated cumulant function

Ck(ul, T, uk_1)

= cum (X (t+uy), - - - X (t+u,_1).X (1)} 4)

The Fourier transforms of these ¢, (.) give the higher-order spectra of the
series. These functions may be estimated given stretches of data.

It was indicated, by property S above, that a joint cumulant measures
statistical dependence. This suggests formalizing the intuitive notation that

values at a distance in time are not strongly dependent via

T 0 ¥ ey, )] < oo (5)

u, M-
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for k =2, ---. It is now direct to provide a central limit theorem for

sums of values of a stationary time series. One has

cumk{iX(t)/\/T}
1

.. P _ k72
=3 > (1=, sle1—t) I T
t 4

=3IT 0 X ey )| 1 TE?
tu, U1
=Y co(u) k=2
u
and

-0 k>2
following (5), giving the limit normal distribution.

Another aspect of the use of cumulants is that a calculus exists for

manipulating polynomials in basic variates. Suppose that
Y=¢gXy -5 Xp)

:Zai,---iLXlil e X (6)

One has directly from (6) Ithat
E(Y*) =% By, ... m EIXT" -+ X[}
but perhaps more usefulll;, there are rules due to Fisher, see Leonov and
Shiryaev (1959), Speed (1983), providing an expression
cump (Y} =Y ¥ cum{Xj :jeoy} - cum{Xj 1 J eop}

where ¢ = (04, - -(-,, Cp) is a partition of subscripts into blocks and the
Yo are coefficients.

A time series analog of an expansion, like (6) for ordinary variates, is
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provided by the Volterra expansion

Y()=apg+ Y a\t-u)X W)+ Y ay(t-upt-u)X@pX(uy)+ --(7)

Uyl
Using the Cramer representation of the process, namely

X(t) = [ e" dzZy (L)
(7) may be written

ag + [ €A WdZy ) + [[ "M 4,0 AdZy M)dZy M) + - - -

in terms of the Fourier transforms of the a;(.), a(.), - --. This form
often simplifies the development of particular analytic results.
Consideration now turns to the use of moments and cumulants in the
identification of nonlinear systems. In the case of a polynomial system
like (7), Lee and Schetzen (1965) develop estimates of the functions

a,(.), a,(.), - - via empirical moments of the form
1 T-1
— Y X(t+uy) - X+ )Y (@)

T t=0
for the case that the input, X (.), is Gaussian white noise.

For the case of stationary Gaussian input and a quadratic system

Yt)=apg+ Y a,(t-u)Xu)+ 3 a,(t—uy,t—u)X (U)X (u,) + noise
u U,y
Tick (1961) developed an estimation procedure as follows. Define the

cross-spectrum and cross-bispectrum via

cum (dZy M\).dZy (W) = SO+  xy (Wd Ad

cum {dZy (M),dZy (M), dZy (A3)} = S+ A+ A3)f xxry (A A)A A jd Ayd A g
respectively. One has

fra) =AM yx D)
Fxxy CA1=A) = 2A,5(=A =2 xx (M) xx (A)

relations from which estimates of the transfer functions, A, may be




developed, based on estimates of the spectra that appear.
Another system that may be identified, in a like manner, takes the

form, for input X (.) and output Y (.),

U@)y=> a(t-u)Xu)

Vi)=G6[UG))

Y()=pn+ Y b@—-u)V(u) + noise

i.e. involves an instantaneous nonlinearity, G [.], and two linear filters. In

the case that X (.) is stationary Gaussian, one can develop the relationships

frxA) = LIAMB M)f xx (V)

fxxy (}\1,)\2) = LzA (_}\1)14 (“}‘Q)B ('ll—xq)fxx 0\1)fxx (}Vz)
where L, L, are constants. See Korenberg (1973) and Brillinger (1977).

Estimates of the identifiable unknowns may be developed based on esti-

mates of the spectra appearing.

4. Point process case. Consider isolated points, 1,, scattered along

the real line. Let N (¢) count the number in (0,/] and dN (¢) the number in
the small interval (¢,t+dt]. Typically dN(¢) will be 0 or 1.

The k—th order product density of the point process N(.) is p,(.)

given by
E{dN(t)) --- dN())
= Prob{dN(t))=1, - --,dN(,)=1)
:pk(t]’ ...,tk)dtl o« . d[k
for ¢y, -+ -, distinct and k = 1,2, ---. This relatcs to the moments
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of the process as foliows. Write N®) = N(N-1) - - - (N—k+1), then the
k—th factorial moment of N(¢) is

14 t

E {N)*) :J‘ ‘e ka(’v ceeLndy e dy
0 0
The corresponding cumulant density is given by
for ¢y, - - -, distinct. The k—th factorial cumulant of N(¢) is now
t t
J. e jqk(t], ...’tk)dtl ot dtk
0 0

In the case of a Poisson pre~ess, the product densities will be given b
p g y

ppty, -, )=plty) -+ p)
with p (¢) the intensity of the process and the cumulant densities will van-
ish for k > 1.
As an example of the use of moments to derive an alternate limit

theorem, suppose one has N,(.), - - -, N,(.) Li.d.copies of a point process

N (.). Suppose they are superposed and rescaled to form the point process

t t
My()=Ny(5)+ -+ Ny ()
The k—th factorial cumulant of this process is

t/n tin

J J‘nqk(tl’.”’tk)dtl"'dtk
0 0

t
=n(=Yq 0, -, 0)
for large n, assuming continuity at 0. This cumulant tends to #g,(0) for
k =1 and to O for £ > 1 and in consquence one has a Poisson limit for

the variate M (r).

5. Extensions. The preceding results and definitions extend quite

directly to the cases of: a spatial process X (x,y), a marked point process
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M o(t —1;), a hybrid process X (1;) and a line process, for example.
J

6. An example. In this section second-order moments and cumulants
are employed to infer the causal connections amongst some contemporane-

ous point processes.
Consider the stationary bivariate point process (M, N) with points T,
and v, respectively. In what follows an estimate of the product density of

order 2 will be needed. The parameter is defined via

pyn W) dudt = E {dM (t+u)dN (¢)}

=Prob{dM(+u)=1,dN(t) =1}
This last suggests basing an estimate on the count

#{I‘ck—'y,—ul<%] ®)
for some small binwidth A. Details are given in Brillinger (1976). One
result is that it appears more pertinent to graph the square root of the esti-
mate. In the case that the processes M and N are independent, one will

have py,n (u) = py, Py, Which possibility may be examined via the statistic
(8).

The suggested estimate will be illustrated with s‘ome neurophysiologi-
cal data. Concern in the experiment was with auditory paths in the brain
of the cat. To collect data, microelectrodes were inserted with location
tuned to sound response. Data was recorded when the neurons were firing
spontaneously. Also responses were evoked experimentally by 200 msec.
noise bursts, that were applied every 1000 msec., via speakers inserted in
the ears. The firing times of 8 neurons were recorded. Figure 1 provides
the data itself for 4 selected cells, 2 in the case with stimulation, 2 when

the firing is spontaneous. Each horizontal line plots firings as a function
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of time since stimulus initiation in a 1000 msec. time period. The
stimulus was applied 505 times in these examples. In the stimulated case
one notices vertical darkening corresponding to excess firing just after the
stimulus has been applied. Neurophysiologists speak of locking. In the
spontaneous case no locking is apparent. There is some evidence of non-

stationarity in this case.

Figure 2 provides the square root of a multiple of (8). The horizontal
dashed lines are 2 standard errors about a horizontal line corresponding
to independence in the stationary case. One infers that the cell pairs are
associated in each case. However in the stimulated case one has to wonder
if the apparent association of units 6 and 7 is not due to the fact that the

cells are being stimulated at the same times.

Fourier techniques provide one means to address this concern. Write

dh) =3 e M
k
dTy =y M
I
for the data 0 < 7,, Yy, <T. For A # 0 one has

E(df; My (M) = 20T fpy (M)
with fy,y (.) the cross-spectrum given by

1 _:
fun ) = E{—j e ‘)“‘qMN(u) du
A useful quantity for measuring the association of M and N may now be
defined. It is the coherence,

Ry 12 = 1fpn OVE 7 fagpg QO yy )

with the interpretation

im tcorr {df; V), dTOV} 12

T —oo
It satisfies 0 < IR,y (M) 1% < 1, with greater association corresponding to
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values ncarer 1. Figure 3 provides coherence estimates for the cell pairs
of Figure 2. This evidence of association is in accord with that of Figure
2. The dashed horizontal line provides the 95% point of the null distribu-

tion of the coherence estimate.

To return to the driving question of how to "remove" the effects of
the stimulus, one can consider the partial coherence. This has the interpre-

tation

; g7 T 4T Ty,2
lim lcorr (dy, — ads, dy - Bdg } |
T oo
with «, B regression coefficients and S referring to the process of stimulus
times. Suppressing the dependence on A the partial coherence is given by

o]
IRpy 5 1< where

Ryn — Rys Ry

VO=1Ry ¢ 1)(1=1R e 1)
Figure 4 provides the estimated partial coherence of neurons 6 and 7 in

Rynis =

the stimulated case. The level apparent in the top graph of Figure 3 has
fallen off substantially suggesting that the association evidenced in Figures

2 and 3 is due to the stimulus.

For interests sake Figure S provides the coherence estimate for neu-
rons 3 and 4 in the case of applied stimulation. One might wonder if they
would become more strongly associated in the presence of stimulation.

The results do not suggest that this has happened.

7. Conclusions. In summary, moments and cumulants may be
emploved to develop approximations to distributions, approximations such
as the normmal or the Poisson. They may be employed in system
identification. They may be used to infer the "wiring” diagram of a col-

lection of interacting point processes.
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The approach presented is nonparametric, not based on special sto-
chastic processes described by finite dimensional parameters. Brillinger
(1991) provides a variety of references concerning the work pre 1980 on

higher moments and spectra.

Acknowledgements. The neurophysiological data were provided by

Alessandro Villa. Terry Speed mentioned the Streitberg (1990) result.
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Figure Legends

Figure 1. Rastor plot of the firing times of 4 neurons in successive 1000

msec. periods. There are 505 horizontal lines of firing times.

Fignre 2. The square root of a multiple of the quantity (6). Were the
processes independent and stationary then about 5% of the values should

lie outside the band defined by the two horizontal dashed lines.

Figure 3. Estimated coherences of cells 6 and 7 in the stimulated case and

3 and 4 when the firing is spontaneous.

Figure 4. Estimated partial conerence of cells 6 and 7 "removing” the

effect of the stimulus.

Figure 5. The estimated coherence of c=lls 3 and 4 in the case of stimula-

tion.
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Moment-based oscillation
properties of mixture models
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and
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Abstract

Consider finite mixture modelz of the form ol 7: Q) = [ f(r;8)dQ(6)
where i~ a parametric density and @ is a discrete probability mea-
sure. An important and difficult statistical problem concerns the de-
termination of the number of support points (usually known as com-
ponentsj of Q from a sample of observations from ¢g. For an important
class of exponential familv models we have the following result: if P
has wore than p components. and @ is an appropriately chosen p
component approximation of P then g(x; P) — g(z; Q) demonstrates a
presciibed sizn change biehavior, as does the corresponding difference
in the disrribntion functions. These strong structural properties have
implications for diagnostic plots for the number of components in a
finite mixture.

Introduction

Consider a fanuly of muvariate probability densities f(x:6). with respect to

sowe ~ finite weasure Jd~ (). parameterized by # € Q. Frequently. interest

TThe awthors were supported by NSE grants DMS-0106395 to Lindsay and DMIS-
003421 to Rewdi
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lies in mixtures of such densities. The random variable X is said to have a

mixture distribution G(+; Q) if X has density

9(z:Q) = [ 1(x:6)dQ(6), 1)

and the mixing distribution @ is a probability measure on Q. If @ has a
finite number of support points v = v((Q) then we say @ 1s a finite mixing
distribution and we write Q, = Y. 7,6(8,) with 6;,...,6, being the support

points (often called components) and =y,..., 7, being the weights.

A problem of longstanding interest in such models is inference on the
unknown value of »(Q). At the simplest level, this is the problem of deter-
mining if v equals 1, the one component model, or is greater than 1, the
multicomponent model. Shaked (1980) presented important results for this
problem when the component densities f(xr; ) are one parameter exponential
family. We extend lhis results in two directions, generalizing to the discrim-
ination between v = p versus v > p, and moving beyond the one parameter
exponential family to the normal mixture model in which each component

has a different mean, but the same unknown variance.

Here we summarize Shaked’s sign crossings results. Suppose we wish to
contrast a multicomponent model g(x; Q) with a plausible one compounent
model f(a:#). Choose 8 = 8* for the one component model so that the

observed variable X has the same mean under both densities:

[rate@ sty = [eptroy ),

Our notation for this last eqnation will be F[X;0Q] = E[X:#7]. Shaked

showed that g Q) — fle:67) has exactly two sign changes. in the order
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(+,—.+), as r traverses the sample space. That is, g{z; Q) has heavier tails
than f(r:6%). Morcover, the difference in distribution functions G(r; Q) —

F(r:6%) has exactly one sign change, in the order (+, —).

We extend lis results as follows: let P, the nominal true mixing distribu-
tion, satisfy v(FP) > p; choose Q,., a candidate p-point probability measure,

such that 1t satisfies

E[X* P] = E[X*.Q

« ‘-f‘]’

k=0,1,...2p—1. (2)

(In Section 2 we show how to solve for @,.) Then, in Theorem 3.2, we show
that g(z; P)—y{z: Q,) has eractly 2p sign changes in the order (+, —,---, —, +),
unless it 1s identically zero (the case of nonidentifiable P). An exact sign
change result for the difference in distribution functions is also given in Sec-
tion 3. In Scction 4, these results are extended to normal densities with

unknown variance.

Before procecding to the mathematical verification of these results, we
offer a foew brief comments on their potential application. In Figure 1, we
plot [g(ae: PY - 4l Q)1 /\/g(x: P) for the case when f(z;6) is Poisson, P
puts mass 13 cach at (1.3 and 5). and @, 1s constructed to match moments
as specified in (2). We note the clear trimodality of this function. in constrast

to the unimodality of the density g{x; P) (Figure 2).

Shaked demonstrated that his sign change results could be used for di-
agnostic checks to determine if the data were from a mixture of specified
exponential fumilv densities rather than a one component model. These
ideas were fother developed in Lindsay and Roeder (1992). When interest

lies i assessing the mmuber of components ina finite mixture. the oscillation
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results obtained in this article have clear mnplications for diagunostics plots.
In a companion paper these results are used to develop diagnostic plots for

the case of normal mean mixtures with unknown varniance (Roeder 1992).

2 Background
2.1 The models under investigation

We will be interested in component densities f(r: ) where both = and 6 have
ranges in the real numbers. say r € T C R and 8 € [l u] C Q. Furthermore,
F{o) satisfies regularity conditions which will be expounded in this subsec-
tion. Although the most important application of the results to follow is the
one parameter exponential family. the results readily extend to other cases

of interest for which we need the following terminology.

A real function of two variables, K'(r, 8), ranging over linearly ordered sets
T aud 1s said to be totally positive (TD) if certain determinantal inequalities
holl (Kailin 1968, p. 11, 13). For instance. the functions exp(f8z) and I{r <
) are TP, In addition. many density functions occuring in statistical theory
are TP. For example, the one parameter exponential family with density
function K (r:A) = exp{Azr —1(6)}. Other examples include the noncentral-t
and noncentral-\? densities. In fact, all of the densities mentioned above are
strictly TP (STD: Narlin 1968, p. 12}, For a more extensive list. see Karlin
19680 p. 1170 We will sayv that f(e:6) is an STP-modelaf fiz: @) as stoetly

totally positive i and 6.
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2.2 Background on moments and exponential fami-
lies

In order to apply our results in a particular model we need to establish two
important structural features for the component densities f(z;6). Our first
requirement is as follows: suppose that P is a mixing distribution with p
or more support points. Then we need to be able to construct a p-point
distribution @, such that the first 2p — 1 moments of g(z; P) and g(z;Q))
match. satisfving (2). Fortunately, there exists an important class of expo-
nential families (the quadratic variance class) in which @, satisfying (2) can
be shown to exist. This class includes the normal, gamma, Poisson and bi-

nomial distributions. The~ following is a bricf review of techniques found in

Liudsay (1989).

In the quadratic variance family of exponential family models (Morris
1983). for each k| there exists a polynomial of degree k. call it £i(z), such
that

[ a0 fla:8)d () = (1 — o)* (3)
for mean value parameter . The choice of jig is arbitrary so we set it to
zero. For example. in the Poisson with mean p. E{N] = u, E{X(X - 1) =
1, EIN(Y = 1)(X = 2)} = ¢ and so forth. In addition, a classical moment
result indicates that for a given distribution P with no fewer than p-points
of support. there exists a unique distribution @, with exactly p-points of

support such that

/n"(za,m:/w‘a’m,«.\. F=1....2p-1 (4)

Thus integrating Loth sides of (37 with respect to dQ, () and JP{;). and

121




using (4) viclds
E& (X)) Pl= E[&(XN):Qpl. k=1,...,2p~ 1. (5)

Finally, the map taking (1,x,...,2°"7 ") — (£&(2),&(2), ..., Eapr (7)) 15 in-

vertible, so (5) implies (2).

More details on solving (5) for @, are given in Lindsay (1989). The solu-
tions can be obtained algebraically for p = 2. For arbitrary p, the problem

involves solving a degree p polynomial for its p real roots.

3 One parameter models

In this section we obtain sign change results for one parameter models. The
following notation (Karlin 1968, p. 20) will be used. Let a(z) be defined on
I where I is a subsct of the real line. The number of sign changes of a in I
is defined by

S7(a) = sup S7[a(xy).....a(x,0)] (6)

J

where S™(yi1.. .., um) i1s the number of sign changes of the indicated sequence,

zero terms being discarded, and the supremum is extended over all sets

T << .. <y (r,e€1) m<ox. (

-1
—

We assumec throughout that f(r:6) 1s an STP kernel and that P and
Q, satisfy (2). The following notation will be used throughout this section:

14

=gl P)ogr=9lr;Q,). Gy =G(e: P) and G, = G(1:Q,).

Remark In the following result we will give exact sign change results for

g1 — ¢» with the proviso “the difference g = ¢, 1s not identically zero™, If
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such an equality in densities occurs, 1t 1s clear that there 1s an 1dentifiability
problem: both P and @, are generating the same distribution. The results of
Lindsay and Roeder {1992) can be used to determine exactly when this will
occur. If the sample space is infinite, 1t will not occur. If the sample space has
N points. then p-point distributions @, are identifial le when p < (N —1)/2,
and so g, — g, cannot be identically zero. If both P and @, have more than
(N —1)/2 poiuts, then g; — ¢» cannot have exactly 2p sign changes, since we
can have at most .\ — 1 sign changes as we traverse the sample space. Thus
our result proves that P and Q, generate the same density. n

Lemma 3.1 Provided gy — g2 15 not identically zero, S~ (g, — ¢2) < 2p.

&

Proof Define the measure dy(4) by

d\(6) = d(P + Q,)(8).

Let
S [ PAN/ P8} +Q({8)) ifhe{d... .. 4,}
Pavi=0 else.

and
(ﬂh_{@uwmmwn+auﬂxuaem ..... )
CTE else,

Then p aud ¢ are versions of the Radon-Nikodym derivatives dP/dy\ and

dQ, Ay ~othar gy =gy = [ flr 8y pr(R)y — ¢ (AP + Q)(6).

< P

We now apply Theorem 3.1 (1) of Karhn (1968). noting that p™(f) — ¢7(F)
cquals one except possibly at the support of Q0 where it can he negative,

Hence ie nnedergoes o maanonn of 2p sien changes. Narlin's result then
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implies that mtegration with respect to the STP kernel f(z;6) will result in
a function. g — g2, with no more sign changes in z than p*(8) — ¢*(8) has
m € relative to dy. This establishes an upper bound of 2p sign changes in

q1 = g u

Theorem 3.2 Provided g, — g2 15 not identically zero, S™ (g1 — g2) = 2p,

with sign changes in the order (+,—,...,—,+).

Proof From Lemma 1, we obtain an upper bound on the number of sign
changes of 2p. Because [ r%(g; — g2)(z)dv(z) =0, for k=1,...,2p— 1, any

polynomial A(r) of degree < 2p — 1 satishies

[ A = g2)(2)d(z) = 0.

Suppose ST{y1 — ¢2) < 2p — 1. Then we can <onstruct a polynomial A(z)
that watches ¢; — g2 1n sign (l.e.. it has single roots exactly at the roots of
g — g2} Tt follows that A(2)(gy — g2) > 0, and since it has zero integral

1t must be zere except for a set of ~-measure zero. Hence either ¢, = ¢». or

71 — g, has 2p sign changes. ]

Remark Axis clear from the proof fur this result, our oscillation resnlts still

k

e 7,

hold if we replace 28 in {2) with any svstem of functions ax(r). such as r

provided that one can construct a polvnomial A(r) := ¥ arax(r) wh ~h has

ary prespecificd set of 2p — 1 zeroes. Such an approach could be uset in

nnproving on the robustness of the sample moments in applications by using
%

bennelo D vaanabdes suelias ag(r) = 2%« 7. The next theorem. however. uses

thee st fonm of of |
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Theorem 3.3 Provided G,—G); is not identically zero, S~ (G, - G;) = 2p-1,
with sign changes in the order (+,—,...,+,~). The roots occur between the

roots of g — go.

Proof An upper bound is obtained on the number of sign changes by ap-
pealing to the sign change behavior of g; — ¢go. The function G; — G, 1s

increasing on the int:rvals [a, b] where ¢, — g2 > 0:
G\(b) = Ga(b) ~ (Gi(a) = Gala)) = [ I{a < = < B (g — g2)(x) d(z) 2 0.

From this it follows that G; — G, has at most one crossing in each interval
where g; — g2 is constant in sign, but has none in the first or last interval.

Hence S™(G; — G2) < 2p — 1. Integration by parts gives

Oz/zd(Gl—Gg)(r):/[Gg—Gl](I)dI,

and more generally
0= /I“d(c1 —Gy)(x) = /x“-l[cz — Gy)(z) dx,

up to k = 2p — 1. Now, follow thc proof of Theorem 3.2. If G, — G, had
2p — 2 or fewer sign changes, a polynomial A(z) of degree 2p — 2 could be
constructed with matching signs. Hence A(z){G, — G,](z) > 0, but has zero

integral. The result follows. ]

For continuouns X, a diagnostic plot based on a nonparametric empirical
analog of G} — G, can be constructed directly. Let F,. the empirical distribu-
tion function. be an estimate of the alleged distribution G, and let G, be an

estimate of G, constructed by using the method of moments estimates of the
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p-component model. Naturally, £}, and éz have 2p- 1 moments in common.
It follows that if F,, — Gz has the appropriate sign change behavior, then
the data provide some support for vsing more than p components. On the
other hand, if a p-point mixture is the correct model, then the asymptotic

properties of F,, — G, can be obtained from empirical process theory.
4 Normal Mean Mixtures with Unspecified Variance
In this scction we consider a mixture model of great interest — the normal

mean mixture. We use the following notation: let f(z;u,7) denote the den-

sity of a N{y,7) random variable and let g(z; Q,7) = [ f(z; 1, 7)dQ (1) de-

note a mixture of normals with corresponding distribution function G(z; Q, 7).

If 7 were known. then this is just a special case of the previous section: how-
ever, in practice, = will typically be unknown and hence we treat it as a free
parameter. In this section we extend our results to this case. We first present
an existence theorem., due to Lindsay (1989), which extends the classic mo-

ment results presented in Section 2 to normal mixtures.

Theorem 4.1 If Q is a distribution with more than p-points, then there

erists a unique p-point distribution Q, and variance 7, > 7 such that
/.l‘k(IG'(I: Qo 7p) = /thdG(r; Q.7) for k=0.1,...,2p. (8)
Proof Wlil this 15 not explicitly stated in Lindsav (1989). it is a conse-

anenee of Lennna 5A and Theorem 5C. In the latter. replace the empirical

moments with the moments of X under G Q7). [
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Theorem 4.2 [If (Q,, 7,) satisfies (8) for Q@ = Qp41, a p + 1-point distribu-
tion, then
g(l‘; Qp+13 T) - g(I; Qp» Tp)

has exactly 2p + 2 sign changes, occuring in the order (—,+,...,+,—).

Proof Since 7, > 7, we can represent the above difference as

g(l', QvT) - g(I, Q;aT)

where Q3 is the convolution of @, with a normal distribution with mean zero
and variance 7, — 7. By the same argument as in Lemma 1, this means there
are a maximum of 2p + 2 sign changes. The polynomial argument used in
the proof of Theorem 3.2 can now be used together with (8) to show that
there are at least 2p + 1 sign changes. Moreover, since @ has more mass
in the tails than the discrete Q4. the difference g(z; Q,7) — g(z; @, 7) will
have a negative sign in both tails, and so must have an even number of sign

changes, hence 2p + 2. ||

Theorem 4.3 G(2:Q,7) — G(xr:Q,.7p) has ezactly 2p + 1 sign changes, in

the order (—. 4+, ..., +).

Proof A smuilar argument to Theorem 3.3. |

Graphical techiniques, such as the normal scores plot (Harding 1948,
Cassie 1954) and the modified percentile plot (Fowlkes 1979) have played
an important role in identifying whether data follows a mixture of two nor-
mal distributions. The geometric characterizations obtained herein extend

the arsenal of potential diagnostie plots for normal mixtures.
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5 Discussion

Our results above, in the normal case, indicate that

9(z;Q2,7) — glri . 0?)

has 4 sign changes in the order (—,+, —,+,~) provided p is the mean of
Q. and ¢? = Var(X) = 7 + Var(Q,). For this case a supplementary result
is available from Roeder (1992). If we instead examine the ratic R(z) =
9(z;Q2,7)/9(3; i, 0?), we obtain a function proportional to a bimodal normal
density. By combining the two results we can see that R(z) is bimodal and

that both modes are greater than 1.

In the normal model, with =y = 7, = 1/2, the density g(z:Q,,7) 1s
bimodal i1 and only if the two separate supports u; and p, satisfy |u; —
p2| > 27 (Robertson and Fryer 1969). Thus the ratio function is much more
sensitive to the existence of two support points than is the density itself.

This sensitivity continues to exist even for very small support weights =;.
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Abstract

The normal distribution has long been the usual model for the analysis of multivariate data.
Moment and probability calculations for the multivariate normal are used in applications such
as the construction of confidence sets, the assessment of error rates in signal processing, and the
construction of optimal quantizers. Recently, the family of elliptically contoured distributions,
which includes the normal, has been extensively studied. In this paper, we discuss moment and

probability calculations for this broader class, paying particular attention to the approximation

of tail probabilities.
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1 Introduction

The normal distribution has long been the usual model for the analysis of multivariate
data. Moment and probability calculations for the multivariate normal have therefore been well
studied for various cases of interest. In statistics, a common application of such quantities is
the construction of confidence sets for parameters of the normal distribution. Other examples

include the assessment of error rate probabilities in signal processing, the constructinn of optimal

quantizers for a Gaussian process, and the computation of a high order correlation coefficient of

the outputs from a zero-memory non-linear device with Gaussian inputs.

The general problem is still intractable, owiug Lo the great difficulty in evaluating high
dimensi-nal integrals, but advances in computing technology and recent research has yielded
innovative Monte Carlo and numerical integration techniques. These advances have widened
the scope of such investigations to include other multivariate distributions. For instance, there
are the elliptically contoured distributions and the multivariate Pearson family of distributions,
both of which include the multivariate normal. Elliptically contoured distributions, in particular,
have been extensively developed: see the collection of papers about them that was recently edited
by Anderson and Fang [2].

In this paper, we study the computation of probabilities and moments for certain elliptically
contoured distributions, and discuss their applications. There are, of course, many classes of
events whose probabilities are of interest, and many functions whose expectations are of interest,
Our focus will be on the evaluation of tail probabilitics, and on methods for computing produict
moments, and other non-linear functions of the components of the random veetor. In Section 2.
we introduce elliptically contoured distributions, and describe their properties. Historically. mo-
ment methods have been associated with Pearson’s family of distributions. Since some elliptically

contoured distributions are also natural multivariate versions of some of Pearson’s distributions.
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we briefly describe this connection also. In Section 3, we discuss applications of tail probabili-
ties, and describe methods for approximating them accurately. These methods include Monte
Carlo with importance sampling, and asymptotic approximations that generalize Mills’ ratio for
the normal distribution. In Section 4, we turn to moment calculations for elliptically cortoured
distributions using one of three tools: the characteristic function, a stochastic representation,
and a certain partial differential equation satisfied by sufficiently smooth elliptically contoured

densities.

2 Elliptically Contoured Distributions and Pearson Families

A p-dimensional vectcr X has an elliptically contoured distribution if there is a non-negative
definite matrix £ = (oy;) such that the characteristic function of X is f(#\ = e'*#3(£'St), where

¢ is a real-valued function on Ry = [0,00). Then X has the stochastic representation
X = p+ VU, (1)

where g is the center of symmetry, the radial part 7 is a non-negative random variable. and
Up is uniformly distributed on {2, the surface of the unit sphere in p-dimensions; 7 and U, are
independent. The matrix £'/2 is a square root of X: for computations, it is convenient to take
¥1/2 to be the lower triangular matrix from the Cholesky decomposition, or the non-negative
definite symmetric square root derived from the spectral representation of £. When X has a

density f, it is of the form

Sz B) =577 ¢(Q), (:

(3]

where Q = Q(z,0, L) = (z — u)’S™ Yz ~ ), g: Ry — Ry,

ap/ rPlg(rtydr = 1, (3)
0
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and a, is the area of 2,; the level curves of f are ellipses determined by {z : Q = c¢}. In this case,
7 has the density h.(r) = a,7?"1g(r?). Examples of elliptically contoured distributions include
the normal, for which g(r) = ¢(r) = e™"/2, and the p-variate ¢ distribution with v degrees of

freedom, for which

I'((p +v)/2)

W(l +Q/v)~ )2, (4)

fp.u(z; H, E) =
Another example is due to Iyengar [12] (sec also [15]):

I(p/2)

TG 1 /) TE T (@) exp(=Q/m). (5)

fp,k(z;ﬂ, E, 77) =

where 7 > 0 and k > 0. When k = 0, (5) yields the normal distribution. For the bivariate
case, Kotz [20] has also studied this family. The uniform distribution on €, is yet another
example which will be used for moment calculations below; it does not have a density. For
further discussion of elliptically contoured distributions, see Anderson and Fang (2], Das Gupta,
et al. [8], and Cambanis, et al. [5].

In one dimension, Pearson’s family of distributions is defined by the following differential

equation satisfied by their densities (see Cramér [7]):

d log f(z) _ z+a
dz " bo + bz + byz?’

(6)

Within this family, the first four moments determine the distribution. Several types of Pearson
distributions (depending on a,bo, b1, and b;) have been identified. In addition to the normal,
the common types are the beta (Type II), gamma (Type III), and Student’s ¢t (Type VII). The
elliptically contoured distributions given by (4), and (5) are multivariate versions of Types VII
and III, respectively. For example, when R = I and p = 0, the density for the p-variate ¢

distribution with v degrees of freedom, satisfies the following differential equation:

_(ptv)z
v+az'z

Vieg f,.(2;0,1) =
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However, there is an important difference between (1) and (5). For (5), if u = 0 and £ > 0, then
the dei.ity at the origin is 0, and the modal value, or peak, of the density occurs on the surface
of the ellipsoid {x : z’£'z = kn}. On the other hand, the density in (4) has its peak at the
origin, and it is unimodal. Several results that apply to the normal and (4) do not generalize to

(5); see Tong [34] for further details.

3 Tail Probabilities

If X is a random variable with density f and cumulative distribution function F| the tail

probability of X refers to
o0
6=1- F(a) :/ f(z)dz (8)
a

for large values of a. In many statistical applications, such as hypothesis testing, the tail
probability of interest is around 0.05. For such cases, the computation of, say, p-values is usually
straightforward. In other applications, especially in engineering, much smaller probabilities are
of interest. For instance, in signal processing, the tail probability arises as the error rate of
a complex communications system (Scharf {30}, Wessel, et al. [35]); and in reliability theory,
it arises as the failure rate of a system component (Lawless [22]). Often such systems have
redundancies built into them, so that their error or failure rates are very low. A simple model
of failure regards X as an overall index of stress, and considers very large values of the failure
threshold, a.

In this formulation of the problem, two difficulties arise. First, the usual quadrature rules
and Monte Carlo methods for evaluating 6 are not sufficiently accurate, so specialized methods
are necded for evaluating tail probabilities. We will turn to some of these methods below. Next,
the basis for the choice of probabilisitic model (that is, F) is tenuous. This is because for a
complex system, the theoretical derivation of F' based on individual component characteristics is
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intractable; also, data to estimate 8 is sparse since the event of interest is rare. While information
about the central region (near the mean or median) of F' is usually available, the tail behavior
is usually unknown, so extrapolation is necessary. One way of addressing this problem is to
consider a wide range of plausible models for the tail behavior to derive a range of values for the
tail probability. For one example of just such an approach, see Lavine [21], who studied shuttle
O-ring data.

Multivariate versions of this prouleiu arise in similar fashion: for instance. a system with
two components may fail when each component’s stress exceeds its respective threshold, leading
to the failure probability P(X; > a1, X3 > a;). A number of new difficulties also arise. First,
multiple integration is still a hard problem in general, so with few exceptions multivariate tail
probabilities are not well studied. Also, a tail region can take on many shapes, for example,
{z:21 > a1,29 > ag}, {z : qz; + azzy > a}, or {z : z? + z2 > a?}. Below, we restrict
attention to convex regions that are far from the center of the distribution, eliminating the last
example from consideration.

There are two main sources of error in assessing tail probabilities. The first is numerical:
it is generally hard to evaluate a small quantity with small relative error. For a deterministic
method, if § is an approximation to 8, the relative error is (8 —8)/8. For a Monte Carlo method,
the coefficient of variation (the ratio of the standard deviation to the mean of an estimator) is
a measure of the relative error. If the unbiased estimator 8, of 8 is an average of n independent

replicates, its squared coefficient of variation (cv?) is

ev?(f,) = 2I0) _ ] [E“’%) . 1] . (9)

2 n| 62
Below, we study the use of Monte Carlo with importance sampling to derive estimators for

2

which the ev? is small. If B is a tail region, and f is the density, importance sampling uses the
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expression

0= /B.{]‘—E—gg(z)d:c = /Bl(:c)g(:z:)dz, (10)
for some “sampling density” g to get an unbiased estimator which is the average of n independent
replicates (over the set B) of the likelihood ratio {(Y), where Y has density g. We seek those g
for which the cv? is bounded as the tail probability tends to zero.

The second source of error is statistical: the uncertainty in the choice of the model F makes
the tail probability estimate uncertain, even if there were no numerical error. There are several
ways to address this issue. One is to introduce a plausible family of models, and compute a
range of tail probabilities for that family. Another is to follow the approach of Johnstone [19],
for the Pearson family. He estimates the parameters of the family from available data, and
then provides an estimate of a given quantile with its standard error. Yet another approach is
Bayesian: first model the uncertainty in F' by putting a prior on it, and then use available data
to compute the posterior distribution of the tail probability.

We start with the univariate case to motivate the multivariate case below. If X has density
f, ’Hopital’s rule says that with suitable regularity, the asymptotic behavior of P(X > a)/f(a)
is the same as that of r(a) = — f(a)/f'(a). The regularity conditions are that f'(t) # 0 for all
sufficiently large ¢, and that the ratio r(a) have a limit as a — oo; these conditions are met in
many cases of interest. Writing

/aoo f(z)dz = r(a)f(a) Ooo {%7—(%(&, (11)

it is clear that (under the same regularity conditions) the last integral in (11) approaches 1 as
a — 20; thus, it is bounded away from 0, and estimating it with good relative accuracy can
“e done using importance sampling. This heuristic has been extended by Gray and Wang [11],
where the generalized jackknife is used for evaluating univariate tail probabilities. The method

suggested below may be regarded as a Monte Carlo analog of that procedure.
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For the normal distribution, (11) yields

Lw #(z)dz = ¢Eza) /ooo a¢fﬁ:r(:—) a)dz = ¢(aa) /000 e~= e~ 4y , (12)

which si'ggests the estimator

f= -d)(—a)e"Tzﬁ, (13)

a
where T has the exponential density, ae™®* for ¢ > 0. Now, let ®(z) and ¢(z) denote the

univariate standard normal distribution and density functions, respectively, and let

- Q(—“:Z:) — l e -2/ —zt \
M(z)= (@) —1'/0 e " 2ze "tdt (14)

denote Mills’ ratio. Since M is a convex, decreasing function (Iyengar [13]), the following

inequalities are easy to prove:

T
1+ 22

< M(z) < % for z > 0. (15)

These inequalities, in turn, imply that

CVZ(é)_M_INE

= Miayass > (16)

as a — 00, so that the cv? tends to zero as a increases. This estimator results from the sampling

density g(t) = ae~*(=%) for t > a. The deterministic analog of this result is that

#(a)/a - ¥(-a) _ 1 1

0<""%Ca  “am@ <&

(17)

so that the relative error in approximating ®(—a) by ¢(a)/a decreases to zero as a increases.
The phenomenon observed in (16) is quite general: for a wide class of problems, the coefficient

of variation actually tends to zero, hence the relative accuracy improves as the threshold a

increases. In addition, this method is feasible since the calculation of r(a) depends on the

differentiation of the density rather than its integration; since the behavior of the tail probability
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is already captured by r(a) f(a), the evaluation of the remaining integral by Monte Carlo provides
a correction term. In practice, either (11) or one of the following two expressions for 8 is also

useful:

flatz/a), _ = af(ataz)
W [ araiziay == @@ [ e (1)

Two other examples illustrate this technique. The first involves the generalized inverse

Gaussian distribution, whose density is

(a/B)M?

f(i|a,ﬂ,/\)=m

t*~lexp [—%(at + ,B/t)] , fort >0, (19)

where K is the modified Bessel function of the third kind with index A. The parameter space
is the union of the following three sets: {a > 0,8 >0}, {a =0,8> 0,A< 0}, and {a > 0,8 =
0,A > 0}. This family includes the gamma, the inverse Gaussian, the hyperbola distribution,
and their reciprocals, in the sense that if X has density f(¢ | a,8,)), then X -1 has density

f(t| B,a,—A). For the case a > 0, 8 > 0, this method yields the estimator

0= 2 flal a0 e+ Zptexp [ 0]

1

S A 2

2 (ax+2T)]° (20)
for sufficiently large a, where T has a standard exponential density. The second example is the

t distribution with k degrees of freedom, with density fr(z) proportional to (1 4 z2/k)~(k+1)/2,

for which the estimator is

2vy,27 (k+1)/2
(k + a®)Y ] , (21)

= pio) |

where Y has the Pareto density k/y**! for y > 1. In both cases, the cv? decreases to zero as
a — . Detailed proofs of these and related results are given in [17].

We now turn to the multivariate case. In 1962, Slepian [32] proved the following inequality.

Let X ~ N,(0,8 = (05)) and ¥ ~ Ny(0,T = (7y;)) with o;; > 7; and 0,; = 74; then for any

vector a, P(X > a) > P(Y > a), where £ > a means that z; > a; for all i. Slepian derived
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this result using Plackett’s identity (see Section 4 below) in a study of one-sided boundary
crossing problems for Gaussian processes. Since Slepian proved his inequality, his result has
been generalized in a number of ways. For instance, the inequality holds for all elliptically
contoured distributions: see Das Gupta, et al. [8] and Tong [34] for such results.

When o;; > 0 for all < and j, the inequality Ps(X > a) > P;(X > a) yields a lower bound
which can be easily computed for the normal, since then it is a product of univariate normal
probabilities. However, this lower bound often gives a poor approximation (see Iyengar [14]), so
that Slepian’s inequality is more useful for theoretical investigations. Thus, in this section, we
describe alternative methods that provide good approximations.

Suppose that X is a p-variate vector which has an elliptically contoured distribution with
density | X I‘% g(z'S71z); further, let term “tail region” refer to a closed convex region B
that is far from 0 (of course, B should have non-empty interior, else the probability will be
zero). If ¥ = L'L is the Cholesky decomposition of £, then Z = L~!'X has the density
f(z) = f(%;0,I) = g(2’z), and P(X € B) = P(Z € A = L™ 'B). Since A is closed and
convex, it contains a unique point, a, that is closest to the origin: |a|<|z|, for z € A, and A is
contained in the half plane {z : 2’a > o'a}. Since Z has a spherically symmetric distribution,
A can be rotated so that a = re;, where €; is the unit vector in the z; direction, and r =|a].
Note that r = r(A) depends upon the set A; for notational convenience, this dependence will be
suppressed. Next, if = Lo, then 8 minimizes the Mahalanobis distance, (z'S~1z)!/2, of points
in B to the origin; also, B is contained in the half plane {z : 2’E~!8 > #'S~13}. Of course,
the problem of finding 3 is a quadratic programming problem which can be solved using known
techniques. For any set A, matrix D, and vector c, let DA + ¢ denote the set, {Dz +c:z € A}.

To estimate § = P(Z € A), ordinary Monte Carlo averages n independent replicates of

I(Z € A), where I is an indicator function. This estimator’s variance is (6 — §%)/n. An




alternative approach is to use f(z — a) as a sampling function (Wessel, et al. [35] refer to this

as improved importance sampling). The expression

S@) e de = f(z+a)
0= [ oo -z = [ T )z (22)
suggests the unbiased estimator
s f(Z+a) 3
0= 1z I{(Z e A-oa). (23)

If g is a decreasing function — that is, f is unimodal, as is the case with the p-variate norma:

or t, but not the family given in (5) — then f(z) < f(z — «) for z € A, and

) = | L0 e <o, (24)

so that § has a smaller variance (and smaller cv?) than ordinary Monte Carlo. However, it can
be shown that for several cases (the normal and the t), the cv? tends to infinity as @ — oo (see
[17]). Thus, we turn to multivariate analogs of the method described in (12) above.

Although a direct generalization of (12) is not available, the analog is to write 49 = A — ¢,

and

6= /f(z)dz_. a)/ f(;(z)a) , (25)

and to manipulate the ratio f(z + a)/f(a) to derive an estimator that has bounded cv? as the
region A moves outward to infinity. Just as in the one-dimensional case, there is no generic
method that will work for all g; and unlike the one-dimensional case, the shape of A (or equiv-
alently the shape of B and the dependence among the random variables as given by X) plays
an important role in the choice of sampling function. We now sketch the details for the normal
and t distributions.

For the normal with density ¢,(z) = ¢,(2;0, 1), (25) becomes

Bz +a) _ (2n)e) gy
so @p(a) o]
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where u = (z3,...,2,). Next, for the t density fy(z) = f,.(2;0,I), a slight modification of (12)

is needed. Let 4; = A/ |of to get

2\ (p+v)/2 2 (p+v)/2
0= fa) [ (”* "") &z = fy(a) ol | (*—"") de.(2)

v+ |2)? v+ Jef?|2|?

Now using the sampling density which is proportional to |2|=(P**) on A;, we get

vt lal?) 1212 (r+v)/2 >
0= fa) ol |, (ﬂ'—u) ot (28)

v+ |of?l2?

Such expressions provide guidelines on the nature of the sampling function to use for im-
portance sampling. The specific choice depends, as mentioned before, on the nature of A,
specificaily, on the shape of A near the origin (or A, near the point e;). In particular, let
B = {z : z; > b),z2 > by}, where the b; are positive; without loss of generality, suppose that
by < by. When the correlation between X; and X3 is p, the point, 8, that is closest to the origin

(using Mahalanobis distance) is

(b1,b2) if p < by/by
B= (29)
(pba2,b2) if p > b1/bs.

Transforming to the independent case and rotating so that the nearest point, a, is in the e,

direction gives

(['R~10]1/2,0) if p < by /b,
a= (30)

(b2,0) if p 2 b]/bg.
The region A is given in Figures 1 for p < b,/b2, and 2 for p > by/b,. Since the nature of
Ap = A — a at the origin is determined by the difference p — b;/b,, the ratio b;/b; will be

preserved in the calculations above: in effect, the region B will be moved outward towards

infinity in the direction of the vector b = (b, ;).

{FIGURES HERE}
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We will now provide some of the details for the normal distribution; for a fuller ace 'nt,
see [17]. When the correlation coefficient p is not large (p < b;/b; when b, < by), the bivanat.
sampling function consisted of a product of two exponential densities, and when p is large, the
sampling function consisted of the product of an exponential and a normal. This is intuitively
plausible, since for small p, the bivariate normal density is not far from the independent case,
while for large p, it is not far from the singular case, for which the exponential given in (113)
yields accurate estimates. Transforming back to X (with py2 = p), the estimators are given by

the following. For p < b,/b,,

$2(b:;Z)(1 - p*)° _pR-11s2
(b1 — pb)(b2 — pb1) ’

where T' = (T1,T3) has independent exponentially distributed components with mean vector

(31)

(1 = p?)/(b1 — pb2), (1 — p?)/(b1 — pb2)). And for p > by /b, it is

?%”—22.34 (T, U) € Ad), (32)
2

where T and U are independent with densities |a] e~lolt and ¢(u), respectively, and Ag =
A — (b,,0) is the translate of the set given in Figure 2. For both of these cases, it can be shown
that the cv? for the estimators given above all tend to zero as a — oo, that is, as the tail
probability diminishes. The proof for the normal case is given in [17]. We omit the proof for
the t distribution. Instead, we turn to the key quantity that is used in the proofs, Mills’ ratio.

Several definitions of the multivariate ormal Mills’ ratio are available. The first definition

is due to Savage, {29] for the case of orthants:

P(X € B)

M(B;R) = m,

(33)

for X ~ N,(0, R). Another definition is gotten by first transforming to the spherically symmetric

case with Z, A, and a replacing X, B, and g respectively. For r =|a| let

P(Z € A)

My(A 1) = ()

(34)
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This definition applies to convex regions A, not just orthants. However, the two definitions do

not coincide when B is an orthant. For R # I,

(35)

T \1/2
i) = st = () e

(2m)F-02¢ (a5 1)
so that the two definitions differ in two respects. First, in place of 3, it uses the vertex b;
for example, when (b;,b2) = (1,2) and p = 0.95, (81,82) = (1.9,2). This is an important
difference, because when the correlation is high, importance sampling centered at & can be much
worse than that centered even at the origin (see [17]). Secornd, the new definition has the factor
(27/ | 2R |)/2; this is not an important difference, but it does mean that proper comparisons

of the two must first adjust for this factor.

For the multivariate normal, the following inequalities for M, generalize (15):

Ma(A; T) < %P[(T,U) € Ad), (36)
and
Mo(A; T Lz uye a 2 e () dudt
(451) > 7 PUTUYE Ao~ [ e s(u)a
oo 42
> (P[(T,U)EAO]—/O %re"”q&(u)dudt] (37)

Sl= 3=

PU(T, U € ] - %] ,

where (T,U) is as in (32). When A = L~1B, where B is a quadrant, explicit expressions for
the bounds in (36) and the first line of (37) are available. Such inequalities are not available for
M,. These inequalities are used in [17] to prove that the estimators in (31) and (32) have cv?
tending to zero as a — oo.

Mills’ ratio for elliptically contoured densities are defined analogously: the numerator is
P(X € B), while the denominator is either ¢,(b; R) or ¢,(3; R) for M; and M, respectively.

In [9], Fang and Xu give a detailed account of M; They show that if X has an elliptically
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contoured distribution given by (2), where g is a non-increasing function, then the function
—P(X € B) is a Schur convex function; they use this fact, along with standard majorization
results to provide inequalities for M;. A detailed study of the analog of M, for other elliptically

contoured distributions has not yet been done.

4 Computation of Moments

In his paper, Brillinger [4] noted that a moment generalizes the notion of a probability, since
the latter is the first moment of an indicator function, which is a building block of integrable
functions. Here, we use the term moment to denote the expected value, when it exists, of some
function of a random vector, that is, E{g(X)] = E[¢(X3,...,X,)]. Conventionally, (product)
moments are defined as F [Hf;l X ,k'] , where k; are non-negative integers. In this section, we
discuss three methods for computing moments for elliptically contoured distributions. The first
uses the characteristic function when it is available, the second uses the stochastic representation
{1) when the moments of T are available, and the third uses several partial differential equations
that are given below. Throughout, let X = pu + 7XV2U,, as in (1).

The first two methods, which are due to Li {23], are of course equivalent; computational
convenience dictates the choice of method. Let the kth moment (when it exists) of the vector

X be given by the matrix I'y(X), where

. EXX'®X...0 X'] if k is even
Te(X) = (v5) = (38)
EXeX'®X...9 X'®X] ifkisodd,
where ® denotes the Kronecker product, which has k terms in (38). This definition reduces to the
usual mean vector and covariance matrix when k = 1 and 2, respectively; I';(.X) = s whenever

the first moment exists. For k > 3, the following recipe tells us where to find F [Hf;l X!"] (with

P _1 ki =k)in [x(X): if the terms in the product are strung out thus, 'yff) = E(X;,Xi,... Xi,),
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then

((k+1)/2] '
i=1
and
[k/2) |
s=1+4 Y (igj-1 — 1) pl/3, (40)
j=1

where [a] is the greatest integer in a.
Using this notation, the matrices I'x(X) can be expressed in two ways. First, if the charac-
teristic function is known, repeated differentiation of it gives the following expressions for k = 2

and 3:

Fo(X) = pp' - 29'(0),

I3(X) pOU @p~-2¢9'(0)p® L+ L Qp+ vec(Z)u'], (41)

where vec(X) = (011,0215+--,0p1s+++,O1py .- ., Opp)’ strings out the columns of ¥ into one long
vector.

This formulation is useful for the family (5), for the characteristic function is given by

v e (R T(p/2) m
Yo k(t;n) = e Mﬂgo(m)m(—ﬂt/‘i), (42)

so that —2¢’(0) = n(2k + p)/2p. A proof of this result is given in Iyengar and Tong [15]. When
the characteristic function is not available, but the moments of 7 are available, t._: representation
(for p = 0 and £ = I) X = 7U, implies that T'x(X) = 7*T4(U,). Since Tx(U,) can be derived
from the known properties of the normal distribution, —2¢(0) is replaced by E(r2?)/p in (41).
For instance, for the multivariate t, the characteristic function is intractable, but the density of
T is proportional to

P71 4 22 0)" P2 50, (43)

which yields the finite moments upon integration. Expressions for the fourth moment I'y that

involve 9¥"(0) or E(r*) are given in [23]; even higher order moments can be computed along
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the lines outlined there. Since quadratic forms in elliptically contoured distributions arise in
standard testing procedures (see Anderson and Fang [2]), Li also provides expressions for their
moments.

In arelated study, Xu and Fang [36] define an n x p matrix has a matrix elliptically contoured
density if TX has the same distribution as X for every n X n orthogonal matrix T. The density
then has the form ¢, , f(z'z);if Y = X X2 for a p x p covariance matrix I, the density of Y is
given by

Cnp [E]7M2 f(E7M 2 yE12), (44)

In their paper, Xu and Fang give the expected values of zonal polynomials and other symmetric
functions of W = Y'Y. The expressions are rather involved, so we omit them.

The third method of computing moments has a longer history. In 1958, Price [27] proved
the following result. Let N (u,X) denote a p-variate normal with mean px and covariance matrix
¥ = (oy;). Suppose that X = (Xy,...,X,) has a Ny(p, L) distribution (written X ~ Ny(u, X)),
and let g:(X1),...,¢,(X,) be differentiable functions of the components of X, each admitting a
Laplace transform; then

g E 4 _ 02 £ C
B, [I:ng(xk)} =E [m I:[gk(Xk)} for i # j. (45)
Conversely, if this identity holds for arbitrary ¢, ..., g, (with both expectations above defined)
then X has a multivariate normal distribution. Price and others used this theorem to facilitate
studies in signal processing. In particular, suppose that a zero-memory non-linear input-output

th-order correlation coefficient

device with Gaussian input X; that yields output g,(X;). The p
of the outputs is a quantity of interest which requires the computation of the expectation of
[T} 9x(Xk). The differential equation of Price’s theorem provides a useful computational tool for

- e

such calculations. Consider the following trivial example: it n{p) = E{A1X3), wiae p1p = p
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is the cotielation between the standardized variates X; and X,, then A'(p) = 1, and h(p) = p
follows.

Although Price’s theorem is an elegant result, it has several limitations. In fact, Pawula
[25] (see also Papoulis [24]) noted that when p = 2, and the right hand side of (45) can be
evaluated explicitly, there is a single differential equation to solve. But for larger p, there are
p(p—1)/2 differential equations to solve simultaneously. Furthermore, Price’s result only applied
to a product of functions of individual components only. Pawula used a result of Plackett [26] to
overcome these limitations. In 1954, Plackett proved the following identity while investigating
a reduction formula for multivariate normal probabilities: if the density of a N,(u, X) variate is

d’p(z -4, E)’ then

15} 0? .,
3T,~j¢p(z - X)) = m(ﬁp(:c -1 L), fori#j. (46)

For the case ¢ = j, we have the diffusion equation
oo gylz i 5) = 5 Dyl - i (47)
30_“ AT o - 9 az?¢p(x - K )

Pawula used Plackett’s identity to extend Price’s theorem thus: if g(z,,...,z,) is sufficiently
smooth and vanishes rapidly near infinity, then

—?—E[(X X)) =E &
30',']' g Lyees /i = 0$.’6:I:J‘

9(X1,...,X,)| fori#j. (48)

This extension allowed the study of more general functions, such as the “linear rectifier correla-
tor,” g(z1,z2) =|z1 + 22| — |21 — T2|.

Pawula then used the following method, also due to Plackett, to reduce the number of
differential equations to solve from p(p — 1)/2 to one. For a given ¥ define a line between it and

the identity matrix [, ¥, = (1 —t)I + tZ for 0 < t < 1. The chain rule then gives

82

P
Y 0z,0z,

0d .
a%(z - ) = Z

1<

dp(T — 15 Xy), (19)
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so that

0 0?
b—tEt[g(Xla---aXp)]_Et Z;Uija—x‘_a—xjg(xl,n‘,xp) » (50)

where F, denotes the expectation with respect to N (i, X¢). When the right hand side of (50) can
be evaluated, a single ordinary differential equation results. By solving it, Pawula showed how
to compute the moments of various functions of X, such as products of Hermite polynomials or
error functions. In some cases, higher order derivatives with respect to t are nceded: they are
just iterates of the partial differential operator on the right of (50).

The search for bounds for certain probabilities and expectations has recently led to several
generalizations of Plackett’s identity to elliptically contoured distributions. The first is a result
of Joag-dev, et al. [18] which only requires that g in (2) be differentiable:

0
gor EmE) = —5 kL‘la z)f(zi,3), (51)
where o' is the i,k element of £~1. Another is due to Iyengar ([12], see also Iyengar and Tong

[15]), who proved the following identity for fp x:

0 . N KT +m) 8 _
pryk(xvy’z’n)- _2' Zz ; 2 + k) 823 BIJ fp.m(-’f,li, 2,77) (52)

This specializes to Plackett’s identity when k = 0. Finally, Gordon [10] proved a definitive
version of Plackett’s identity for elliptically contoured densities (the proof of which he traced
back to (8,18]). He showed that the following two statements about functions g and h, each

mapping R, into itself and vanishing at oo, are equivalent:

h(t) = / g(r)dr (53)

and
0 in@r= L —hs(a) (5)
a(TiJ'gE T)= 81,‘01‘,1‘ EATh >
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where gx(z) =||~1/2 g(z'£~'z), and similarly for h. When g is an exponential or an appropri-
ately chosen gamma density the identities of Plackett and Iyengar, (46) and (52), respectively,

follow. Next, for the p-variate t with v degrees of freedom, we have

_ F((p + V)/2) v —(p+v-2)/2
WO = s =g Y . (55)

These extensions of Plackett’s identity have been used principally for theoretical investiga-
tions, in particular, for studying the nature of the dependence among the components of X. A
systematic study of their use for the computation of moments of various functions (other than
the usual product moments given by I'x) has not yet been done. The mathematical basis for
Plackett’s identity goes back to the 19th century work of Schliti: {31] on hyperspherical sim-
plices, and the late: work of the geometer Coxeter [6]. For more on the geometrical aspects of

Plackett’s identity and related issues, see Abrahamson [1] Iyengar [16] and Ruben [28].

5 Conclusion

In this paper, we have discussed recent developments in probability and moment calculations
for elliptically contoured distributions. These developments should allow the use of models other
than the multivariate normal for high dimensional data. Clearly, much more work needs to be
done. For instance, since Monte Carlo is an increasingly popular method for assessing the
performance of various systems, a more systematic study of appropriate sampling functions is

needed. Only the beginnings of such a study are given here.
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Legends for the two Figures

FIGURE 1: p < b,/b2; A is bounded by L; and L,.

_ bi(1 - p?)/?

Li: 2= — (YR 1p)/2 > (Y R-1p)1/2
1% 2o 57 = b)) (21 = (V'R™7b)' /%), for z; > (V'R™'D)
—b,(1 — p2 1/2
Ly: 2= __(%#(z1 — (6'R™16)Y?), for z; > (b'R™b)V/?

FIGURE 2: p > b1/bs; A is bounded by L; and L.

Ly: 2y = (pz1 — by)

2= - iz or a2 b
o (pbs — by)
Ly: z; = by, for z3 < (1= p2)/2
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Abstract

In this paper we discuss the problem discriminating among various non-linear time
series models. While the method we propose is of a general nature we counsider a re-
stricted class of models that share an identical AR(1) equivalent correlation function
structure ;lience, identical spectral density. Consequently, the possibility of discriminat-
ing among them on the basis of second order moments is theoretically, and practically.
impossible. The approach being taken is aimed at discriminating among the models
on the basis of higher order moments i.e. the higher order cumulant structure. Specif-
ically. we shall focus on the 3"-order cumulant structures as our initial step beyoud
the conventional covariance structure.

Key Words : Time series, Linecar, Non-linear, Gaussianity, Stationarity, Au-
toregressive, Exponential Models. PAR(1), ARE(1). EAR(1), TEAR(1), NEAR(1).
Robertson’s Fixed and Random Models, Correlation and Cumulant Structure.
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1 Introduction

Statistical methods based on moment information have been used extensively. In terms of
model identification the time series literature has been devoting a considerable attention to
the problem of identifying the p and q order under the general linear framwork of ARMA(p.y)
modelling. Second order correlation information (e.g. acl and pacf) became a main tool in the
process of of selecting p and q. While second order information is of paramount importance
in the case where the roots of the AR and MA polynomials remain outside the unit circle,
higher order cumulant information becomes crucial in deciding on the locations of the zeros
or poles of possibly non-invertible, non-causal and non-Gaussian ARMA models. Of course
there are many very useful statistical tools for solving the above mentioned problems which
are not based on moments. For example, the use of information based criteria such as AIC,
MAIC and BIC in selecting orders of an ARMA model. the use of MLE in locating roots
of a mixed phase ARMA process. ect. While these non-moment based methods might be
more efficient than moments methods, the moments methods are generally simpler. easier
and intuitvely appealing both in theory and computation. It is often the case that one needs
the initial point supplied by such a method to start an efficient but complicated non-moment

based method.

The introduction of non-linear time series models in recent vears (e.g. bilinear, threshhold.
random cocflicient. ect.) amplified the importance of using higher order ciumulant informa-
tion in discriminating among the various non-linear models. It was shown that different
modecls are capable of producing an identical correlation funetion of the linear autoregressive
type: thus, giving rise to a class of models characterized as 2°order equivalent. Conse-
guently. efforts have heen diverted to the analyvsis of the higher order cumulant structure with
the hope of exploiting differences among the models at higher order correlation dependeney
strncture. The basie idea underlying the scareh for information in the higher order cumulant

structure in order to distingnish two models may he stated as follows, Within the class of
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moment determination. moment sequences of two dilferent stochastic processes cannot be
identical. Specifically, given two stationary series {X,} # {Y;} there exists (uj uy.. .. ug)
such that k*-order moments or cumulants with lags (uy.uy.. ... ug) of { X} and {Y.} are
not equal, i.e.
Coluy ug,oooug) # Cylug g o).

In practice, one hopes that the above is true for a small order k. and the difference is large
relative to a given sample size. Otherwise. the search for a discriminatory power in the higer
order cumulant structure might turn out to be fruitless.

The problem of discrimination among non-lincar time series models has been considered by

many authors. Lawrence and Lewis [21] considered special 3-order structure of the form

Cor(RP X2 ) . Cov([R)% Xok)

t+ A
where R are the lincar autoregressive residuals of order p for RCA and PAR models .

Within the class of bilinear models Li [26] and Gabr [10] considered quantities of the form

(,,'()(‘(.\',2, X%

t+k

Cov( X} Xihk)
respectively. Auestad and Tjostheim [4] considered the use of non-parametric methods aimed
at the conditional mean and variance of various non-lincar time series models. Anderson [l
approached this problem differently by observing differences in the sample paths gencrated
by the exponential family. Using a fluctuating type statistic he was able to discriminate
among simulated traces for a reasonable number of observations. In his work the moments
do not play a role in the proposed discrimination procednre and as such mayv provide an
alternative in sitnations where moments up to the desired order do not exist. Tsay [37]
offers a verv general method for selecting a4 madel depending on the tvpe of characteristic

one is interested to investigate.

We propose a new approach which relies on the conjecture that the information required for

discrimination among the models s available in the higher order moments or equivalently,
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in the higher order cumulant structure. Speciflically. we shall concentrate our attention on

the third order cumulant structure given by

(ﬁ("', ") = [:‘[(‘\’t - ;uJ')(‘\’/-'I' - /’1')(-\.(—5 - //J” (]1)

The family of exponential time series models will be the framework within which we shall
show the parametric equality of the correlation (hence, the spectral density) functions. and
the way in which the theoretical higher order cumulant structure points out to the differences
among the models. We demonstrate the method for a restricted case where we consider a
family of non-linear time series models with known marginal distributions and a common
AR(1) equivalent correlation structure. This family consists of marginal exponentially dis-

tributed time series models which include :

(1) Product Autoregressive Model [ PAR(1) ]

o (ii) Exponential Antoregressive Model [ EAR(1) ]

(i) Transposed Exponential Antoregressive Model [ TEAR(1) |

e (iv) Newer Exponential Autoregressive Model [ NEAR(1) ]

(v) Robertson’s ixed Model

(vi) Robertson’s Random Model

[n addition we shall consider the lincar antoregressive model with exponential innovation
process which we shall call ARE(1). As opposed to the family mentioned above the ARE(1)
does not have a known margimal distribution however. its moments can be computed. This
model. though. shares the same correlation structure as the non-linear exponential family.

The underlying objective is 1o diseriminate among realizations produced by the models

we consider. This task is impossible to accomplish sinee they have identical second ovder
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structure. We should note that the models heme considered by no means exhanst all such

second order equivalent ones

The plan for the paper s as follows: we shall start with a briet review of the traditiona!
approach to time series avalyvsis _ followed by a presentation of the family ol exponential
time series models in section 3.0 1o that section we shall state the Torm taken up by cach
model, show the tvpe of sample traces they arve capable of producing and develop ther
correlation functions. Then we eive a briel review of higher order cnmlants i scection L
Subsequently, the results we obtained for the 3" order cimulant structure for the seven
modcts under considerations ave presented o section 5. General methodology is presented in
section 6. The results of the stmulation part are the topic of section 7. There we also brietly
discuss the way in which the sample traces, correlation lunctions and 37 -order cunmitdants

were generated empiricallv. N briel concluston is given in seetion .

2 Stationarity, Linearity and Gaussianity

Over the last 50 vears statisticians have developed a large body of theory and methods aimed
at the analvsis ol time series data. A comprehensive account of their work enlnanated
books such as Kendall and Stuart {17]. Jenkins and Watts [15]. Box and Jenkins [5]. Hannan
112]. Anderson 2] Brillinger (71 Chattield (9], Koopmans {18], Priestley [30]. Rosenblan
132]. and Brockwell and Davis [N]. to name a few. The fonndations of classical time series
analvsis. as deseribed in the above references. were thought to be based on two underivine

assumptions. stating that

b, The time series is staloonary 1o an order of at least two, The process i assmuned to
retnain e equilibrinn abont o constant mean level with the proportion ol ordinates e
excecding any eiven fevebis abont cqual over any time interval spaned by the <ample.

I case the ohserved <eries does not et saeh bhehiavior, i s forther asstroed thas
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weak stationarity can be achieved by applyving an appropriate transformation e.g. linear

filtering.

2. The time series, viewed as a stochastic process, { X, 0 € T}, is an output from a
lincar filler whose input is the white nowse process {7} heneel the observed sample
realization can be represented as a linear function of past and present values of {Z,} -

a one sided representation.

[n recent vears the vahdity of these twin assumptions - as reasonable approximations to
sample trace realizations - has been questioned as data from a wider variety of sources
became available. Coupled with advances in the field of non-lincar dynamics (deterministic
chaos theories), research in the field of non-stationary, non-lincar and non-Gaussian time
series methodology have been in progress. Subsequent efforts to bring non-linear time series
literature under one unified framework resulted in the publication of books like Priestley
[29] and Tong [36]. The reader is also referred to Mohler [28] for a collection of papers on
theory. computational methods and applications in the arca of non-linear signal processing.
Tong [36] discusses properties of the Gaussian stationary lincar model (GSLM) which may

possibly be violated :

e (a) Time series that exhibit strong asymmetric behavior cannot be expected to confirm
to the GSLM. Such models are characterized by symmetric joint cumulative density
functions and that rules out asvmmetric sample realizations.

e (b) The GSLM does not give rise to clusters of ontliers e.g. sudden bursts of large
magnitiudes at irregular time intervals, Observed time series in socio-cconomic related
phenomena do tend to exhibit groups of ontliers.

o (cjSample traces that demonstrate strong eveles canmot be modeled by the GSTN sinee
the regression functions at ag (kb oo EINN, 5] are all Tinear doe to the assumed

juint normality.
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e (d) The Gaussian process { X;} is reversible i.e. (X......, X, )" has the same distribution
as (Xy,, ... X1)'. Reversibility is violated in the presence of differences in the rate at
which a sample path rises to its maxima, and the rate at which it falls away {rom it.
Oue simple way for investigating departnres {rom reversibility is to plot the sample on
a transparency and then turn it over. If the mirror image is similar to the original plot

then the series may be assumed reversible - irreversible otherwise.

One could also test formally for Gaussianity and linearity. Following Brillinger [6], who
pointed out to the potential of using the bispectral density function as the basis for classifying
a process as linear (and possibly Gaussian) or non-linear, Subba Rao and Gabr [35] and
Hinnich [13] developed formal tests for linearity and Gaussianity. The tests are based on
the constancy of the normalized bispectral density function under the assumption that {X,}
have a lincar representation. Tong [36]) provides a comprehensive review of tests for linearity
and normality. Priestley [29] considers the case where a stationary process does not fit into a
lincar representation and concludes that "a fortiori many types of non-stationary processes
would also fall outside the domain of linear models.” In summary, observed time series do
not necessarily conform to models such as the GSLM. The degree to which a time series
realization represents a trace generated by the GSLM. has a direct bearing on the usefulness
of estimating an ARMA(p.q) model. For purposes of prediction, forecasting and control one
is better off taking advantage of the non-linear (hence, non-Gaussian) structure of the data
during the modeling stage. If indeed the GSLA is deemed inappropriate. one has the choice
among several families of non-lincar models. We shall turn to some of these explicitly in

section 3.
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3 AR(1) Type Exponential Models (EAR)

The family of models we consider here is that of the ceponential autorcgiessive models, which
is composed of the EAR(1) and its generalization to the transposed crponential autorcgressiee
model TEAR(L), and the ncwer eeponential autorcgrssice NEAR (1) model. This type of time

series models were proposed by Gaver and Lewis [T, Lawrance and Lewis [20, 21], Jacobs

and Lewis [111]. Lawrance [19] and further developed by Lawrance and Lewis [22.23. 214]. Also

we consider Robertson’s Fixed and Random models [31], and the Product Autoregressive
PAR(!) model proposed by Mckenzie [27] - where all models being restricted to a first order
autoregressive structure.

In contrast with other non-linear time series models (e.g. bilincar and threshold), this elass
of models is an attempt to capture the behavior of, possibly observed, time series processes
with explicit marginal exponential distributions. The family of AR models is advocated
as a way of relaxing the assumption of marginal Gaussianity which underlies the Gaussian
linear stationary model. The reasons behind the choice of the exponential distribution as
the marginal distribution are given in Gaver-Lewis [L1] and Lawrance and Lewis [23]. The
standard linear first order autoregressive process, AR(1), with exponential input. ARE(1).
will be used for comparison purposes in section 5. This model has an identical correlation
and spectral density functiens as do the models mentioned above :however, its marginal
distribution is not known, thus, it is not to be considered as an exponential model but
rather as a linear AR(1) model with exponential input. The fact that it is lincar enables us
to distinguish it from auy other non- lincar model. with or without an identical correlation
structure. based on the theoretical result stating that « process with a lincar representation
has a flat (constant) normalized bispectral density, for more details see Subba Rao and Gabr

[33]_
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3.1 PAR(1) Model

A natural extension of the linear AR(1) model was proposed by MeKenzie [27] and consists
of an exponentiation of the lincar model such that the additive form s being transformed
imto a multiphicative form. Here we consider a sepeial case of the ganuna famiiy of marginally
distributed time series where the output series has an exponetial marginal distribution of
unit mean. Specificaliy,

N, = N, (3.1

where a € (001) and 1 s given by a mixture of uniform (0. ) and exponential mean one
random variables independent of cach other.

This model differs from the others we consider tn two aspects, First, the innovation process
does not posess a known parametric density function and its higher order cumulant structure
is expressed in ternis of the moments of X, only. Second, we note that (3.1) may be lincarized
by taking the logs of both sides of the equation. As such it s classified as an intrinsically
lincar model te. a non-lincar model which can be linecavized. 1t ditfers from the following
models which cannot be hnearized due to their switehing nature and are to be considered
under the elass of itrinsically non-lincar models oo a non-linear model which can not be

lincarized.
3.2 EAR(1) Model

In the following set up we et {£,} be a sequence of id exponential (V) random vartables

with a probabifity density fiinetion given by

/. ‘ \e Yo 00N L0
e ) 3.0
! J l ) otherwise . (4.2

-~
~




We detine an EAR(1) model as.

4\'[ = ﬂ.\'p_l + 3 (i-i)
_ I PN with prob. p (3.1)
- 1 pNio + E owith prob. (1 —p) o
- [)4\,[;1 -+ I[[D‘( (‘—))

with (0 < p < 1) and {/,} being an i.i.d sequence defined by

0  with prob. p

[ = (3.6)

I with prob. 1 —p.
Under this formulation {X;} is marginally distributed as an exponential random variable

with parameter A

Gaver and Lewis [11] point out to several characteristics of the EAR(1) model:

e Setting p = 0 vields the special case where { X} is a sequence of i..d exponential

ratidom variables.

e =, is not a continuous random variable. This feature distinguishes (3.5) from the usual

linear AR(1) equation with Gaussian or exponential input.

o The representation (3.5) 1s one of 4 random linear combination of an i.i.d exponential
sequences: this, can be casiiv simmlated on a computer.

One problem the EARCT model has s called zero defect” tsee Lawrance and Lewis 1227 and

relate to the sample paths i cencrates. Specificallv, the model eenerates paths in which

larege valies are ol ed by tans of decreasine valnes, with the rans havineg ecometrically

distributed lengthe, dne laree valies e when £ incdnded v Lo Towhide the falline

valnes stem from the determnn=tic part of 35000 [0 Gy,




3.3 TEAR(1) Model

A natural extension of the EAR(1) model is to interchange the role of X, and [7, in (3.5).
This does not affect the exponential (A) marginal disicibution ol X, Upon replacing p by

I — o we obtain the transposed coeponential autorcgressiore TEAR{(T) model

No = LN+ 11— )k (3.7
_ Neoy + o I‘~ alk, \\':nh prob. «a (48]
(1 —a)k, with prob. 1 —a
where
[ = { 0 \v.ith prob. 1 -« (3.9)
L1 with prob. «.

Note that in this case the innovation process is a continuous random variable scaled by
a constant 1 — a. The behavior of a simulated path. for a large o. shows geometrically
distributed runs of rising values (e, [, = 1) followed by sharp declines when the selection
Iy = 015 made. The decline due to the exclusion of the previous value X,_).

The TEAR(1) model is discussed by Lawrance and Lewis [22] as an extension of the KAR(1)
model. However, TEAR(1) is also a special case of Arnold’s [3] exponential model diiven by

past innovations. Specificallv. define the random variables
Ne=1 tandonlvif (=1

Ne=yv fandonlvil O, =00,_,=0...1,_,, =1

where £ are 1d Bernonllitp) randony variables with NV, being distributed identicallv bin
not ndependently as Geometricto ] random variables with domain 1.2.3... .

The model. expressed i terms of past imovations, is ¢iven by
\,
No=ad (3100
S

where o~ aid Foxpt N and the sim s mdnpliod by o to obram strrer stationaritn | his

Y"i?[l'ﬂ'htﬂfl(lﬂ i~ U}i]d‘l!i"fl 11 [EASTARARN A RN RS ’wi!" I I\“‘ i ! H':\)Iit‘l, ‘.{‘\l [ §1I~"«i\t‘]v\_
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3.4 NEAR(1) Model

The previous two models. EAR(D) and TEAR(1), arce special cases of a more Hexible model
in which { X, } in (3.8) is scaled by a coeflicient 37 thus, simulated realizations generated
by such model arve of interest as it may cirenmvent the problem of geometrically distributed
runs of falling or increasing values which might not be applicable. Specifically, let {X,}
denote the time series variables and {15} be a sequence of an ii.d unit mean exponential

random variables acting as the innovation process. The NEAR(T) model is defined as

N, = - +{ 33X, with prob. o G

0 with prob. 1 —a

— e'j[[.\-:,l +5[ l;l'_).)

where
. £y with prob. p L
T { bl;y with prob. | —p (3.13)
| 0 with prob. I — e 301
"1 1 with prob. o (3.

with h = (1 —al)dand p = Cﬁ The parameters o and 3 are allowed to take values
over the domain defined by 0 < a 3 < 1 with a3 # 1. Setting (o =1 . 0< 3 < 1) in
(3.12) vields the FAR(1) model. where fixing (3 = 1.0 <o < 1) give rise to the TEAR{()
model. Both are extreme cases of a NEAR(1) process. We note that dne to the distribu-
tional assumption underlyving { £}, the innovation process is not atlowed 1o take on negative
valiwes e PIE, <7 0] = 00 1t is obvious how the concept of Tswitching™ comes into plav in

(3.12). The switeh from one lincar picce to the other is controlled by an external randon.

mechanism with a prespecitied parametric probabilistic stractinre,
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3.5 Robertson’s Fixed and Random models

Robertson [31] suggested two exponential models which we shall refer 10 as Robertson’s fixed
and random models. Our main concern is to show that these models cannot be identified
via the correlation or spectral density functions thence, one has to explore the higher order

cumulant stricture.

3.5.1 The Fixed Model

Consider the following switching structure

. X,_, — In3 with prob. 3
X, = et T T W RTOD. (3.15)
I with prob. 1 — 3
where 3 1s a fixed constant, E; has a truncated exponential distribution given by
1 —¢ :
e 0 << =Ins 116
a=d ™ . 3.16
Jele) { 0 otherwise (3.16)

with the marginal distribution of X, being exponential with unit mean. Alternatively. (3.15)

may be represented using an indicator random variable i.e.

\,: Ip(‘\,[_l —IYI'f)+(1_ I,)[':[ (317)
where
[ 1 with prob. .3
= 3.IR
L { 0 with prob. 1 — 3. (3.1

3.5.2 The Random modecl

One may generalize the fixed model by allowing 9 1o become a random variable which acts

asa mixine distribution. with domaimn restricted to the mterval (017 Specificallv let X, have
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the representation

. X,_y = In3, with prob. J,
Ay = . ‘ . 3.19
K { E, with prob. 1 - 3, (3.19)

or stated in terms of an indicator random variable

A\rr = ]t(‘\"—l -— l”,f[) + (l - I,)["’( (320)
where
|1 with prob. 3, -
li= { 0 with prob. 1 — 3, (3.21)

The probability density assigned to .3, is a beta density with parameters (o, 2)

o
o
[§
~—

0 otherwise.

' (a+ D=3 V<3<l . a>0
Fald) = { ala+ 1) ) a

The distribution of [n.3; is obtained using the standard transformation of variables technique.

Let Y = [n.3, then

afa+ 1)1 =) —xx<y<0.a>0
. = ! 3.23
hriy) { 0 otherwise, ( )
The probability density function for [, is appropriately modified
1 -
) —— ¢ V<< =Ind
JTeley=q 1= . ‘ (3.24)
0 otherwise.

Within this framework one notices that the random variables I, and F, are not independent
as they hoth involve the mixing distribation 4. The marginal distribution of Xy, though.
remains exponential with unit mean by construction. We remark that all these models are

stationary in the wide sense i.e. strictly stationary.

3.6 Summary

We recadl that the nodels nnder imvestication are the followine -
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ARE(1) :

.\-/ (,").\'/ 1 t l'/y/ (32'))
PAR(1) :
N,= X0 (3.26)
EAR(1) :
S - W with prob. p -
A= { pXNi+ Ey with prob. 1 —p (3.27)
TEAR(1) : (p=1-n0a)
. Xt + (1 —a)t, with prob. «
- . -)(l
Ay { (1 — o)k, with prob. | — « (3.28)
NEAR(1) :
. BX,_1 4 & with prob. a
= REA
X { g with prob. 1 —a (3.29)
where,
. Ly with prob. p
. bE; with prob. | —p
LT
p_l—b h = (1 — )i
Roberston’s Fixed Model :
. Xooy — I3 with prob. 3
X, = . , 3.
! { F, with prob. 1 —J (3.30)
where
L7 << —Ind
. — 1—-13
Tr(d) { 0 otherwise
Roberston’s Random Model :
Y, - I Xioy = Ind, with prob. 3, (3.31)

| £ with prob. I — 4,

where
1 . ,
) = 0< < —Ind
f) otherwise

Foid) - { afo+ 1)1 =33 D dct.a>0

0 otherwise.
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Table I: Correlation Functions

s

o° a o’ a’ (v /3)° 3 (=)

ARECH | PARCD) | EARCU | TEAR(CL) | NEAR(H) | Robertson’s Fixed | Robertson’s Ra.mhnNE{

o I wt2

For all models, but Robertson’s and PAR(1), the input process {15} is assumed to be an
Lid exponential sequence of unit mean and. with the exception of ARE(D). the output { X}
has a marginal exponential distribution with mean one. The correlation functious for the

various models are given in table 1.

Figures 1-3 contain simulated traces produced by the various models. Note that we indexed
the parameter values of cach model such that the correlation functions produce identical

results e p(s) = (0.1)% (L)Y (0.75)%.

4 Higher Order Cumulants

Let { X} be a real valued strictly stationary random process and let m(f.4,. ... 1) be the

Forder product moment i.c.

mty .. ... )= BN N X (1.1)

For a stationary process of order A, we can write (1.1) as

Ill(fl./g ..... /k):lll(“./_wFfl./_; ——/] ..... /1; _/1). (1.2)

Now let the characteristic function (ef) of {X,} be defined by

o \((‘ ‘:‘: .... (‘) — I'/‘[( I((l-\'rl + N+ +<k'\.'k)] ‘ 1.3
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then the Taylor series expansion of (1.3) about the origin is given by

: (GGG _ - :
ox(() = / Z(g—lg;‘ ! (‘\,14\,2...,\’,1)+()(|S|") dF (1.4)
g=1 .
IS sl ~ -. ~
= EZL&ﬁ%T“)HXhXQHHEJ+OH£F) (1.5)
y=1 J: -
ko i
= Zl (L]Q%;—;Lilln(il,tz,....lk) + O(] ¢ [/‘) (1.6)
J=1 J: -

[NIE

where

S- |: {Zf:l Cf)}

distribution function .

and 1= Fyx, x,..0x,(

The logarithm of the ¢f (4.3) is defined as the cumulant generating function (cgf)

K x(CroCannn o G) = log{ B[O ¥ o+ Xt Gy (1.7)
such that C'(1;.4,... .. te). the E*-order joint cumulant of the set of random variables
(X0, Nyl X, }- 18 the coefficient of (¢;.(y. ..., () in the Taylor series expansion of (1.7)

about the origin. Specifically

A. J - - -
o — (GG (), - |k :
AX@>:}4H-L$——LCAMJ2 ..... L)+ 0 ¢ (1.8)
=1 '
where O (1 oo 1)) = Comulant (X, . X, X)) - Wenote that the cumulant of order

greater than two are all zero for a Gaussian process. This feature is used extensively in signal

processing to suppress Gaussian noise,

The relationship between moments and cumulants were formalized by Leonov and Shirvaey

[25] and are given by

... Bed = EINL XN = ey ) (1.9)

1

where the sum s taken over all partitions (1, ..., ) which s a partition of (1,0 .. ).

Relationship (1.9) implies that we can write the moments 1o terms of the ammualants and if
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we invert (1.9) then one can write the cumulants in ters of the corresponding moments:

hence, the inversion of (1.9) yields

C(X N V) = =0 = ECTT N BT X)) (1.10)

v 1€ 1€y

and if the process is A" -order stationary then we may write

(I(’ll) ..... I;\) — (v(“.l)*ll ..... ’;\ ’,l)
= ({1 Tye.... T y)
From (110} it is seen that the comdant C(rom. ..oy T ) is a A order polvinonial in the
moments of no higher than & and conversely, the A order moment ot 4, .. .. [} 1s a

Freorder polynomial in cumulants of order no higher than k. Consider the specilic cases

o0y = KXY =g,

~ Apls) A plsa) +oplse = s b+ 20
C(s)osgosa) = (s, s,08y)
poplsy = sposy = sp) A grlsgasa) o plsosg) +oplsyosa)
o 20 s ) A ) b oplsay Fopilsy = s plsg — sy )+ plsy - oso) )

s (s s0) = plsplsy = s) - plsy)plsy = s) = 6

where

plsy = EINGNG L
pilse s,) - /'.'I,\',,\',hl,\',“_'|

/I(.\]. Mol Nl,) I’}\/\/ by \r b '\/é‘ ‘|
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Consequently, one may write ('3(s1.s2) in the form

(Y(r-'“‘) = I"[(\? - /11')(‘X’l+r' = )(‘\'H-s - /ld')] (ll 1)

Il

["/‘(-\-i‘\-li-l‘-\-l-ks) — ’ll_v,-[i"y( .\‘(.\-[+,v) "*' 11'(4\71.\’1_*,5) '+‘ ['4'(.\;—(4”- .\’[+s)} —+‘ 2//;

and C4(s,. 52, 83) may be expressed as

Clroso) = E[N X Xews Xogl (4.12)
B[N X s N e+ ELXOX s X + BN 0 X o] + BN XN X))
+ 2 (EX X ]+ B X ]+ EIN N )
b EX Xppoor] 4 B[N X pusr] + EIX X puss])

— BN N BN N ) = BN @ EX X ] = EIX X ELY N gyel] — 64

For a detailed account of the relations between moments and cumulants the reader is advised
to consult Kendall, Stuart and Ord [16]. Cumulants and their relationship to spectral analysis
are discussed by Sesay [31] and Rosenblatt [33]. Sesay [31] discusses the various uses of

cumulants and cumulants spectra, specifically

e Cumulant spectrais used in tests aimed at diseriminating between linear and non-linear

non-Gaussiau processes (see Subba Rao and Gabr [35]).

e The asyvmptotic.distributions in some non-linear theory may be obtained using cumu-

lants.
o Time reversibility may be determined by verifying ('( =<0, ... —spo) = (800 skimy)

or equivalently the imaginary part of the A" order spectrum is equal to zero.

o Cross-cumulants. and cross-eunmlant spectra. can be used in the estimation of the
parameters of a non-lincar difference equation through the use of transfer functions

that arise in the Volterra expansion (see Priestley {30]).
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5 The 3-Order Cumulant Structure

In 1he following we shall present the 37 order cumutlant structure for cach of the models
discussed in section 3. For cach of the models a closed Torm solution to the 37 Corder cumulant
structure is given. These solutions are based on closea form expressions obtained for the
expectation terms which define the 37 order counulant stencture, Forall - hut ARE{) model
- the output process s marginallv disteibuted as an exponential process with unit mean. 'he

results presented in this section are based on the marginal moments given by

Thenpnt process is taken as an d exponential process with unit mean: heneeowith identi
cal moments as stated above, Robertson’s and PAR{1) models form a separate class, i this
respect, sinee the innevation process is defined by a sequence of 1Lid truncated exponential
random variables and a mixture of exponetial and uniform random variables. respectively,
The introdnetion of a mixing distribution 1 Robertson™s random model further complicates
the structure of the innovation process, Tables 203 and 1ist the 37 order cumulant stractnre

for these models. We recall that the models under investigation are given by (3.23)-(3.31 ).

The following expressions are used in tabels 203, 15 and 6
g Xy

|
1, = e
/ b -0
2
L VR
/ (|~('l‘)(] - )
t
Vo e e e
N 1l (,')")(l o)
, R
T R I —
=
( | o
Ty T' a i
) | l,'i’
! (..’..’r
127 -
I )
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[T /l\} S b a) L e (001

p.o= piilooomb
pea o 2p (L pib?]
) S
1(’, - l ) f
) - I - (a.g)
= | a.J
_ -\
M) - A
N = i
.r l or . !
a = Fias - - 4 e
) ’ I+ a
by — 30 = Elngl)
R A Ll
do= EINON L = op., ap,
. | - 0
YT = e
[
)
12 T
b 3 2
Pl sl — Edndl7] = qio+ 1) : |
At el e g (o +2)° {o 4 1)
, - - 2 2
IR AT TR /L'[(/n.ﬂ'/,'j N T B R
| (v + 1) (o +2)
| | |
EELLY o R = ada ) J'" s e e e
L] S )l()’»] o+ 2 ((»F'_’)J}
L I | | |
IS0 Ol AR D Ol R R ! [ ST o e oo
Tl Y nla 4+ )l(l T oo (0 4 2)° (o i‘".f)"}

Given the information summarized i these tables one may standardize the rate of decay
of the correlation finction such that the correlation himctions ave identical for these models
for a given parameter valine, Ony voal s 1o investicate how wonld the 37 order ennmlant
strincture helave subject 1o o standardized correlation function. It is aar conjectare that
one might bhe able to disarmmuate amone sienal paths prodoced by the varions models on

the hasis of hieher order moments. {1 s obvions that the correlation functions can aot he
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Table 2: 3"-Order Cumulant Structure : The Lincar Model

ARE(1)

irs = 3prapte + 203

ér[/”f,:s - 2,“1,2/1'1"]

+{7(T) - l"r][ﬂj‘,‘l - -)'/li]

O pes + 2 [¥(27) — (7))
F2p[v2 (1) = pey(7))]
F20,00 25 {a(7) — 675 (1))]
—feahe ] + 207 + 245

O s Hope g + )20 + (7))
— e 2{07 + 0T+ B} 4 {A(T) AT+ 1) + 1]
+2/tf.

.1+ 7)

L(‘(h. h+7)

®T+2h“r,l

126 (e {2 (2h) = 7(R)} +re{ralh) + 75 {30l h) —

o
1—¢

"y(h)}}]

+/11',2¢’l-)

(1) +pey(h)A(T)

g2 {7+ &7+ MY Fua (7)) + (T + B) + ()} + 20

Table 3: 37-Order Cumunlant Structure : The Intrinsically Lincar Model
PAR(1)
{0.0) 2
(‘(()!T) ;:T:[ll.l T2 T ),“J‘u"+l]
‘ zl‘r 2aT 41 .)I‘x‘17$|

( (T‘ T) Ha 20T T MaaT

(‘( oL+ T) HronT+)41Hra41 {ﬂ;.w‘w + fraTHlg + M .+1} +2
HraTHy aiaT41) Hzoat L 741 Har, o

Clhohopr) | Zellelstnn PR, Qfenin g Zealtisy
“.r.u"l‘_r',,h{ur_',” Ity o o at+h ;M

nsed as a tool for diserimination purposes

and consequently nor can the spectral densities.

To illustrate the shape of the 3" -grder cumulant structure, see fignre 1. we set

Gop.ooyFoad S = 005 First,

clear characterization of the cumulant surfaces. Consider the ratios, presented in table 6,

the models with a stimple close form 1e.

we observe that certain ratios i tables

EARCL). TE

230 and 5 vield a

foor

FAR(L) and Robertson’s fixed model.

While such sitnple expressions are not available for the remaining models it is possible to

investigate the behavior of these ratios nnmerically.
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Table 4: 37 Order Cumulant Structure :

The Intrinsically Non Hnear Models

EAR(1) | TEAR(1) NEAR(1)

C(0.0) > 2 2

(0, 1) 2p” 207 2a 3y

C(r.7) 2p%7 2071+ 7(} —a)] | 6A7 o
+»"]((x.7')"{/l,‘;‘;(7’) — l]
+2p g 03— {3 (1)
—( )T ()} = (7))
Fpto 2 (T)

C(l, L +7) | 2p7F a7t (2 — o) 20 d) T3S+ 2]
+(a3) g,
a7 .+ 2009
~R2{(ad) (1 + d) + ad}
s (T)
FraalT )+ T 42

Clhi h+71) | 2p7H2 2074 (1~ a)] | 6(ad) A

+‘1((Lf)"+"/1,m,(h)

+2(ad) g a5(T)
+2(().f)"+l/l;‘)]~:]’—y§{7/\(h)
—(ad) Ty sh)}

F ) 2 (h)
i, (7)

—2{{a )7 (1 + (a.3)) +((r3)i‘}
gt A7) AT 4 R
eyl + 2

more informative for the purpose of discriminating among the models : i
[n the simulation context . however. since the cwmulant surfaces decav rapidly towards 0, the
computation of these ratios hecome dificult as we attempt to divide by very small values
These mumnerical considerations nnstabilize the use of the ratios as a tool for diseriminating
amocng the models,
of parameter values such that the correlation function of ach model exhibits an identical

bhehavior (eg. plsy — (0.5)7) are also given. fignres 7

The cormputed ratios (as functions of the lag 7). indexed by a sct

i and

C(1.147)

fi. ~o to demonstrate the shapes of the

expressions given in the first and fourth rows of table 6.

Given the plots of the ratios and the camntant sarfaces Tor the six models we mav classify

them tnto three categories. EARCD) forms its own class, Robertson’s moaels and TEARUT
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Fable 50 37 Ovder Comulant Structure = The Tatrinsically: Non-tinear Models (cont )

Robertson’s aned Modpl l‘()}ll;:(r‘l‘rt.;'(‘);lrlA,ﬁ ila11d0111 Mo@(l

C0) o 2 2 L
L C0.7) 247 200 - o
C(r.m) 237(1 - rind) 2ol - 27h, 0 ]

Ha+ 2abfy(r - 1) - (7 - ')nr—-I]
+ (")[ a +(]

C{l.L+71) 237N~ [ 3) o lg‘“

_(]

Cihoh+71) 237~ Wil 3) »lgr”‘

%‘)(/})[u “,( ) + co’]
| Faly(r) + (7 +h) + )]+ 2

form a separate group. NEAR(1) and PAR(!) form an additional class. Note that the
cumalant surface produced by NEAR(1) 1s a combination of EAR(1) and TEAR({1) and that
it looks very much like the surface produced by PAR(1). However. the two models seem
to differ in their behavior when one observe the plots of the theoretical ratios. Closer look
at the vertical axis for NEAR(1) and PAR(1) in figures 5 and 6 shows that the ranges ave

simitar and much smaller than the ranges of the vertical axis for the other models.

6 Methodology

In the following we propose a discrimination procedure that mav be applied to the models

ander investigation (3.25)-(3.31) or to any set of competing models.

[t

Mo {afinite set - U H G arameter models
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Table 6: Ratios of the 37-Order Cumulant Structure

EAR(1) TEAR(1) | Robertson’s Fixed Model |

?E;:; P’ I+ (L —ao)r I —7ilnd
@(‘(—(ﬁ)—) p* a2 = o) 3(1 — [nd)
(——((h—oh—:—)ﬂ ph AL+ (1 - a)] 31— hind)

('!1.1+T! 2—r ()(2-—(1! .f“—-lnlﬂ

C(r.7) P l+r{l=0) [—rinid
C(hJitT) th—t A Ik (=) AR (= hinid)

C(r.7) 14 1+ 7{1~x) | ~71in
C(hhtT) 2(h—1) BRI AT - hing)

C(L147) p 2=y 1-in,3

Our objective is to identifv the most compatible model m € M with {X},,. dpecificaiiy.
given {X,}'_,. find a model m € A such that 1 ~ {X(}L,.

Procedure :

1. Compute Coltgenug) « kb =0.1.2.. . u; € I integer. We call it the empirical

i order cumulant structure based on the data { X, }35,.
2. For cach me M

(a) Estimate . using {X,}7_,. the parameter 0,, (possibly a vector) for model m.

(b) Compute (' (g, .... ug) for model m empirically or using the theoretical cumu-
lant structure. We shall call it Method 1 if the computation of the cumulant
strneture is done using the known theoretical cumulant structure. We shall call
it Method 2 if the computation of the cumulant structure is done empirically

based on {X,}i_,.
3. Given the above guantities we seck to minimize. for a norm || ||
N““rne;\’l ” ('f(lll ..... llk.)m('()m(lll....,llk) “ . (()l)

Alternatively,

.‘\“Il,”g‘\, “ _/”J-(,‘\| ..... AL — _fﬂm(,\\] ...... i} H (6.2)




where fy, (A, ..., ) is the &% order spectrum (e polyspectrum). The general
distance measure may be specitied as e.g.

lall= > Lol

{u, }ES

There are several issues that need to be considered under the proposed procedure. st
various properties of the model such as stationarity, ergodicity, moment conditions, moment
caleulations. parameter estimation and simulation aspects of sample traces must be investi-
gated. Second. statistical properties of the formal test statistics based on (6.1) or (6.2) have
to be studied. In order to do so the sampling propertics of the proposed procedure must be
imvestigated. In the following section we consider the simulation aspects of (6.1) and present

some stnmlation results for both methods | and 2.

7 Simulation Results

In order to verily the possibility of discrimating among the various models on the basis of
their respective 3" order cumulant surfaces, it is necessary to obtain reasonable agreements
among the theoretical and simulated cumulants. Tn the following we discuss issues related
to the simulation aspects of the sample traces, correlation functions, 3"-order cumulant

surfaces and ratios.

7.1 Simulating Sample Traces

I he simnlation aspects of the NEAR(1) model and its special cases. EAR(1) and TEAR(1).
were considered by Lawrance and Lewis [20]. The algorithm they give is being used in our
simulation to generate sample reahizations for the NEAR(1) family. The subcases, EAR()
and TEAR(). are simulated by setting (o = 099 . 0 <J« Dand (4 —009 0 <o < 1

respectivelv, in the same program that generates the simulated paths for NEAR(H) model.
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We follow Lawrance and Lewis in setting the degenerate parameters to 0.99 so to avoid

complications in the simulation of the traces.

Robertson’s fixed and random models are ganerated by two different programs. One which
allows a sclection of a branch with a fixed probability and one which allows the selection
of a branch with a random probability generated according to a beta raudom variable with
parameters (0,2). The input signal is a trancated exponential: hence, needs to be simu-
lated accordingly. Since no IMSL subroutine is available we generate a realization from a
truncated exponential random variable using the cumulative distribution function technique.
Realizations from the AR(1) model are easily simulated and no further explanations are re-
quired. McKenzie [27] discusses the simulation of PAR(1) models. The innovation process
Vi is generated according to

Vo= BT

where U is distribited as a uniform (0, 7) sequence of random variables which is independent

of E - a sequence of exponential mean one random variables. The funetion b is defined by
blo) = sino(sinao) ™ (sin(l — a)o) ',

Thus, {V;} is generated as a mixture of umform and exponential sequences of independent

random variables,

All the simulated paths are generated by FORTRAN programs that call IMSL subroutines

which are used to simulate continous uniform. beta and exponential realizations.

7.2 Simulating Higher Order Moments

One FORTRAN prograr is emploved in simulating the correlation functions. 3™-order en-
miulant surfaces and certain stices of these surfaces . Smoothing considerations lead us to

simulate each model 30 times where the length of cach simulated trace is 1010 data points.
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Table 7: Distance Measure (6.1) - p(s) = (0.25)°

PAR(1) | EAR(1) | TEAR(1) | NEAR(1) | Robertson’s Fixed Robertson’s Random
PAR(1) 0.26 0.2] 017 0.06 0.58 0.40
EAR(1) 0.018 0.015 0.68 0.08 1.40 1.14
TEAR(1) 0.78 ) 0018 0.7 0.08 0.03 i )
NEAR(1) 0.12 0.09 0.31 0.008 0.84 0.63
Robertson’s Fixed 1.80 i.65 0.22 1.06 0.02 0.7
Robertson’s Random 0.73 U.66 0.02 0.34 0.12 0.05

The program computes two expectation torms @ F{XN,.X4,], over the range of fags 0 to 9, and
EIX, X4 Xigrts), over the range of lags, -9 to -9. Then the smoothed emipirical correlation
function aund the smoothed 3™-order cumulant surface are computed using their definitions.

In the computations of the expectation terms we use :

1 1001

[ﬂv[‘\’[ AX't_*_,v] = Z AX’z.X't*_T
1010 <
] 1001

EIX X Xigrgs) = Z XiXoir Negras
t=1

1010

In order to dctermine how accuratly the simulated cumulant surfaces mateh their theoretical
couterparts we plot the empirical correlation functions, the empirical C'(7, 1) slice and the
complete simulated surfaces in figures 7-9. This is done for various parameter values and

shown for those that correspond 1o p(s) = (0.5)°.

7.3 Discrimination Procedure : Method 1

The results of the simulation study are summarized i tables 7-120 Tables 7-9 are examples
of typical values obtained by a single run of the simulation. Tables 10-12 provide the propor-
tions of correct model identification out of 30 repetitions. Note that in table 7 the diagonal
fine contains the mmimim values of rows 2-5. This is precisely how we would expect the
procedure to perform for any parameter value indexing a standardized correlation function. :

However, errors occure at the first and last rows where the method fails to seleet the correct

194




Table 8 Distance Measure (6.1) 0 p(s) = (0.5)°

r PAR(1) | EAR(1) | TEAR(1) [ NEAR(1) | Robertson’s Fixed | Robertson's Random
PAR(1) T gl TS ST 141 143
EAR(1) 0.07 001 221 0.30 334 312
TEAR(1) 159 2897 0085 149 0.0R7 0.10
NEAR(1) b 0.37 0.93 0.005 1.67 RS
Robertson’s Fixed 4.02 R 0.32 2.6 0.06 0.13 ﬂ‘
Robertson’s Random 2.36 1.91 0.07 076 0.26 0.332 |

Table 9: Distance Measure (6.1) @ p(s) = (0.75)°

PAR(1) | EAR(1) [ TEAR(1) | NEAR(1) | Robertson’s Fixed | Robertson’s Random
PAR(1) 1.91 1.12 228 0.03 307 i 202
EAR(1) 1.82 0.02 6.53 0.85 5 T 69
TEAR(1) 4.14 3.85 0.6 1.25 0.79 0.93
NEAR(1) 1.83 0.63 3.26 0.09 4.14 4.15
Robertson’s Fixed 4.82 1.59 0.31 1.63 0.57 0.70 |
Robertson’s Randomn 9.43 10.38 0.51 5.32 0.24 0.36 7

model. The PAR(1) model is being identified as a NEAR(1) model and Robertson’s Random
model is being identified ax a TEAR(1) model. The theoretical plots of the 3"-order cumu-
lant structure support this confusion as they show that these models produce very similar
surfaces that are hard to distinguish.  In table 8 we note that the procedure fails again
to select PAR(1) and Roberson’s random models.  Frrors occur at the first and last two
rows of table 9 where the procedure fails to distinguish PAR(1). the fix and randem mod-
els. The incorrect selection that appears in the above tables is cousistent with our previous
remark regarding the grouping of the models into three categories. Robertson’s models and
TEAR(1) were identified as sharing a very similar 3”-order cumulant structure and so were
PAR(1) and TEAR(1). Thus, one would expect to have difficulties in discriminating among
models that belong to the same family. The pattern established in the previous 1ables is
consistent in the 30 repetitions we consider in tables 10-12. PAR(1) is consistentlv confused
with NEAR(T)  and TEAR(1) and Robertson’s models stand out as a separate class. The
random model is by large the hardest to identify and tvpically s mistaken for TEAR(1)

model. Althongh the procedure is suceessful iadentifving TEAR{1) and the fixed model it
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Table 10: Proportions of Correct Identification :

pls) = (0.25)°

PAR(1) | EAR(1) | TEAR(1) | NEAR(1) | Robertson’s Fixed Robertson’s Random
PAR(1) 00 00 0.0 10 0.0 0.0
EAR(1) 0.03 097 0.0 0.0 0.0 00 ]
TEAR(1) 0.0 0.0 1.0 0.0 0.0 0.0
NEAR(1) 0.0 0.0 0.0 1.0 0.0 0.0
Robertson's Fixed 0.0 0.0 0.0 0.0 0.73 0.27
Robertson’s Random 0.0 0.0 0.7 0.0 0.03 0.27

Table 11: Proportions of Correct Identification :

pls) = (0.5)

] PAR(1) | EAR(Q1) | TEAR(1) | NEAR(1) | Robertson’s Fixed Robertson’s Random
PAR(1) 0.0 0.0 0.0 1.0 0.0 0.0
EAR(Q1) 0.0 10 0.0 0.0 0.0 0.0
TEAR(1) 0.0 0.0 0.7 0.03 0.27 0.0
NEAR(1) 0.0 0.0 0.0 1.0 0.0 0.0
Robertson's Fixed 0.0 0.0 0.17 0.0 0.83 0.0
Robertson’s Random 0.0 0.0 0.63 0.0 0.37 0.0

Table 12: Proportions of Correct Identification :

p(s) = ((),T;'))‘“

[ PAR(1) | EAR(1) | TEAR(1) | NEAR(1) | Robertson’s Fixed Robertson’s Randoum
PAR(1) ! 0.0 0.0 0.0 1.0 0.0 0.0
EAR(1) 0.0 1.0 0.0 0.0 0.0 0.0
TEAR(1) 0.0 0.0 0.67 0.07 0.26 0.0
NEAR(1) 0.0 0.0 0.0 1.0 0.0 0.0
Robertson’s Fixed 0.0 0.0 047 0.0 0.5 00 J
Robertson’s Random 0.0 0.0 0.53 0.0 047 0.0 Jl
196




Table 13 Proportions of Correct Meantiication @ p(s) - (0.25)°

[ TEAR(1) l Robertson’s l'*i‘iixq(jl ”l_{pﬁl)gr‘l"t s;)il’s Vljial;lr(iOAl_ljl‘:

TTFEAR(1) 0,57 003 i
Robertson’s Fixed 0.3 .87 ] 7 LU
Rol)(‘rtsnn’sBandom ( 1NN 0.1 - ().T.'if

Fable 11 Proportions of Correct ldentilication @ p{s) - (0.5)°
] /

' TEAR(1) | Robertson’s Fixed P{'ohertson’s' Randon |
l‘ TEAR(1) o T Toad 0 oas
“Robertson’s Fixed | 027 L Toae b o2t
{Bdhéﬁéopkinhndou} L S (S I (AU

is the confusion in selecting, the random model that makes it difficult to judge the aduguacy

of TEAR(H) or the tixed model. However, since the three models sharve very similar traces

and 37 order cumulant structure one may choose to aceept cach of the three as compatible

with anyv of that group.

To remedy this problem we may apply the proposed diserimination procedure to the pr

order camuiant structure for these three models. One may argue that sinee the models share
an identical 27-order moment structure and a similar 3" order cumadant structure (but too

similar so their dilferences can not be captured by (6.1)). then it might be possible to reveal

1 il

their truce identity through the use of the order cumulant strncture. Tables 13-15 contam

T

the results of the simulation study applied 1o the U order cumulant structare of TEAR(T)

and Robertson’s models. The choice among, the models is not clear eut as the proportions

Table 15: Proportions of Correct ldentilication @ p(s) = (0.75)°

l‘lu/(R(il) 7[-7{(7)[)7(‘7?(.;97()71:1:;577 P’ng{d ] VROVI{(EBVS()II’é R:\ndnm]

- TEAR(1) | 03 0.3 0.07 !
Robertson’s Fixed | 0.13 05T TR |
| Robertson’s Random { 017 0.17 noG ' ]
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Table 16: Proportions of Correct ldentification @ p(s) = (0.25)°

ARE(1) | PAR(1) | EAR(1) | TEAR(1) | NEAR(1) | Rob's Fixed | Rob’s Random |

ARE(1) 1.0 0.0 0.0 0.0 00 oo 1T Tou T

PAR(1) 0.0 073 0.0 0.0 0.7 00 0.0 |

EAR(1) 0.0 0. 093 .0 - .07 | __ubo ] g
TEAR(1) 0.0 0.0 0o 0.63 T 003 U3

NEAR(1) 0.0 03 0.03 00 06T 0.0 oo

Rob’s Fixed 0.0 0.0 0.0 0.07 0.0 0.67 0.26 ]
Rob’s Random 0.0 0.0 0.0 0.3 00 PR 07

of correct identification are not large enough to enable a reasonable degree of diserimimation
power among the three competing models. This result was expected to hold given the
theoretical expressions as expressed through the plots for the theoretical 17 %order cumnlant
structure, figure 10, In these plots the models are shown to produce similar behavior at
various frames of C(rs.u): thus. there is no reason to expeet a high degree of diserimination
power among the models on the basis of the proposed procedure and the 47 order cummnlant

structure.

7.4 Discrimination Procedure : Method 2

In tables 16-18 we provide the results of our simulation study according to (6.1) based on
the empirical cumulant structure only. Note that we added ARE(D) for comparison pur-
poses. Since the marginal moments of ARE(1) are different from the remaining models we
standarize its mean to equal one so the mean of the exponential innovation process becomes
I - o. The higher order moments are not standarized to equal those of the exponential
models. The results in tables 16-18 are by large consistent with the results obtained
under the previous method. The main difference appears to be in the improved separation
between PAR()Y and NEAR(D) under the second method while under the first inethod. which
involved the theoretical cumulant structure, PAR(1) is consistantly mistaken for NEAR(1).
We nse method 2 with the 17 order empirical cimulant structure for TEAR{1) and Robert

son’s models. The results are summarized fu tables 1921 Figure 11 contains the plots of
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Table

17: Proportions ol Correct Identitication -

/l(.\} ooy

- ARE(1) [ PAR(1) | EAR()) | ’IFARU)I NEAR(1) | Rob’s Fixed | Rob’s Random |
ARE(1) 1.0 1.0 A- o) f O un } T o |
PAR(1) ua T osT HET un L O | ou + wo T
EAR(1) ;_' 4 oo T 1o ‘,.AL, Taal L uo - 7" T 75

TEAR(1) oo ol i 0.0 Wr‘ ] v ! T i T '

NEAR(1) I A O Toaw ao T o \

Rob's Fixed 00 Tou L ao ] i ()Tl N T R TR !

Rob’s Random 0 kj oo T o T Tou T B ur o
Table I1¥: Proportions of Correet fdentification @ pts) = (0750

[ ARE(D) | PAR(1) | EAR(1) | TEAR(1) | NEAR(1) [ Rob™s Fixed | Rob™S Randow |

ARE(1) 1.0 k ° ‘ o] 06 o TRV i

" T T PAR(1) v ! RS 7"{)“(1- -7 o 0o ‘t oo 1‘

—EAR) vo T 1o * L A L S U R L
TEAR(1) o U A L | ne 0.3 J
NEAR(D) 0.0 Ay o o] o T e T 0o ]

[ Rob’s Fixed 0.0 oo 0.0 'I< oo ] 00 T ’I T om0

[(Rob's Random | 0o = o | o6 ] 057 T oo [ T T e
. i } . - .

the simulaied 17"-order canmulant stincture for the three models. The resalis confirm our

previous comment regarding the difficnftios encounterd hy the diserimination procednre in

distinguishing among these three models,

8 Conclusions

The problem of discrumination among non-hinear time series models is considered

i this

paper through the family of exponential models. Tn this specific case we are able to develop

. . {I . .
the theoretical 37 -order cumulant structure and conlivm i

Table 19

Proportions of Correet Identification :

- »TF:AHR( )R __[_{szertqon leod
~_ TEAR(1) 0.10) ueT
" Robertson’s Efié—d_ 0 liiwi ] st
* Il()l)ertsgyl‘s—gzll1;!ﬁc)ll (fm ' J*' N 0.3 )
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Fable 200 Proportions of Correct ddentification = p(s) = (0.5)°

TI‘P AR (1) I Robertson’s ¥ ixed | h;il)'(;l:t,—s‘gg’isvggnﬂdon{—
~ TEAR(1) - ] 0.20 I 4 0.53
Robertson’s Fixed | 1 - nﬂm L T
| Ro Roberjqon_s I}zlndol{’ ﬂ(l:‘_’zw | LS e AL
Table 210 Proportions of Correct Identification @ pis) = (0.75)°
| I'TEAR(1) | Robertson’s Fixed | Robertson’s Random |
'; TEAR(1) T .30 0.30 0.10
E Robertson’s Fixed | 0.10
1 Robertson’s RandomL 0.13

propose is not restricted to the elass of AR(1) type models or the ¢lass of models for which
analvtical results for the 3™ order enmulant structure are available. 1 is a general procedure
with the potential for a wide range of non linear models. It is bused in the understanding
that different models cannot have an identicai moment sequence ; hence. the discrimination
among them would become possible at some stage in the higher order camnlant structure.
In our specific case we are able to obtain a significant improvement in our discriminatory
power just by gotug one step above the traditionai second order moment analvsis e, the
correlation function. While second order moments play a dominating role in linear model
diserimination they are very limited in the non-lincar case. When the 277 order analyveis fails
to provide enough information we propose to apply higher order moment analysis for the

purpose of model discrimination.
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MOMENTS IN STATISTICS:
APPROXIMATIONS TO DENSITIES AND
GOODNESS-OF-FIT

Michael A. Stephens,
Simon Fraser University, Burnaby, B. C., Canada V5A 1S6

Summary

In this article we discuss ways in which moments are used (a) to approximate
distributions, and (b) to test fit to a given distribution.

1 Approximating distributions using moments

Solomon and Stephens (1977) give a number of examples of statistics X for
which the first few, or even all, the moments or cumulants may be found, but
whose density f(z) and distribution F(z), assumed continuous, are intractable.
A good example is the statistic S whose distribution is the weighted sum of
independent chi-square variables, each with one degree of freedom, written

k
=Y A(w)? (1)
i=1

where u; arei.i.d. N(0, 1), and A; are known weights. Many quantities in statis-
tics have distributions (often asymptotic distributions) like S; for example, the
Pearson X? statistic, used in testing fit to a distribution when the distribution
tested contains unknown parameters which are e:iuimated by maximising the
usual likelihood, rather than the multinomial likelihood, has this distnibution
with some A; # 1. Other goodness-of-fit statistics, of Cramer—von Mises type,
based on the empirical distribution function (EDF), also have such asymptotic
distributions (see, for example, many examples in Stephens, 1986a).

One of the first examples of S to be taoulated, for k = 2, involved errors in
target hitting during World War 2: tables for S were produced with some labour
by Grad and Solomon (1955) using analytic methods. These have been extended
by various authors to higher values of k, but the analysis after k = 5 or 6 rapidly
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becomes very difficult. Thus in general it is difficult to find exact percentage

points of S, but the cumulants «,, »r = 1,2,.. ., are very easily obtained:
k
Ko =y N2H(r—1)! (2)
i=]

2 Moments and cumulants

In this section we list definitions. The r-th moment about the origin of a random
variable X, or equivalently of its distribution f(z), will be called u.; the r-th
moment about the mean will be g,. The moment generating function Mx (1) of
X is defined by

o0
Mx@)= / ¢'? f(z) dz; 3)
~00
when expar.ded as a Taylor series,
pot? | pst® Bt
Mx(t)=1+#i+—;!—+—g—!-+~--+-—;+--- (4)

where g = pf is the mean of X.
Cumulants &, are defined through the cumulant generating function Cx (t) =
log Mx(t), where “log” refers to natural logarithm. Then

2 3 r
Thus in prizciple we must find Mx (¢} before finding Cx (t).

The following relationships exist between low-order moments and cumulants:
K1 = py = p; K2 = po = 02%; K3 = pa; ke = pg ~ 3p3. Further relationships may
be found in Kendall and Stuart (1977, vol 1).

Suppose Z = X| + X2 + X3 + ...+ X; where X; are independent random
variables. Then a property of moment generating functions is

+ ... (5)

M3(2) = Mx, (8) Mx, (1) Mx,(t) . Mx.(t),

so that
Cz(t) = Cx,(t) + Cx,(t) + - - - + Cx, (1), (6)

and it quickly follows, using obvious notation, that
ke(Z) = 6, (X1) + 6 (X2) + -+ £, X )
This additive property makes it very easy to find cumulants of sums of inde-

pendent random variables, and hence, for example, the cumulants of S.
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Two important Mx(t) are those of the N(u,o?) distribution, Mx(t) =
exp(ut + 0t?/2), and the x? distribution, Mx(t) = 1/(1 — 2t)"/?. Finally,
it is easily shown that p.(aX + %) = "yt (X). for r > 2, where a and b are any
real constants, and x,(eX +b) = a"k.(X),r > 2.

As an example, consider S. If X has a x? distribution, the MGF of X
is 1/(1 — 2t)"/2; thus Cx(t) = —1log(l — 2t), and expansion gives Cx(t) =
t+ 2% + %‘—:— + 5—3_5—' 4 ... Thus the r-th cumulant of X is x, = 277 1(r — 1)},
that of \; X is ATk,, and by the additive property (7), the r-th cumulant of S
is given by the expression (2).

3 Mathematical approximations

The approximations in this section are called “mathematical” because they are
based on mathematical analysis, with known properties of accuracy and conver-
gence, in contrast to those to be considered later.

Suppose n(t) is the standard normal density

n(t) = e~t'/2/\/2x (8)

and let f(z) be the (continuous) density of X. Then it is (nearly always) possible
to expand f(z) as

f(z) = n(z) {l + -;-(#2 - ) Hy(z) + ‘éll3H3(I) + ,—2-12(;14 — 6o+ 3)Ha(z) + .. }
(9)

called a Gram-Charlicr serics. The H,(z) are Hermite polynomials. Lists of
Hermite polynomials, and also conditions for convergence, etc., are given in
Kendall and Stuart (1977, vol. 1).

The basic technique involved in deriving (9) rests on the fact that Hermite
polynomials are orthogonal with respect to the kernel n(z); thus

oo . -
/ Hi(z) Hi(z) n(z)dz = { 9;'.7”. (10)
—co Jht=1).
Then if f(z) = Y_; e;n(z)Hi(z), multiplication by H;(x) on both sides, and
integration, gives

¢ = /_oo f(z) H;(z) dz /!

. When worked out, ¢z = (n2 — 1)/2,¢3 = p3/6, etc.

If an infinite set of moments is available, as for S, the density can be ap-
proximated very accurately using a Gram-Charlier series of sufficient length, but
there are many statistics in practical applications for which it is difficult even
to get the first four moments — see Solomon and Stephens (1977) for examples.
There are two other important drawbacks:
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1. A k-term fit might, at any one value of z, be worse than a (k — 1)-term
fit.

2. Gram-Charlier series with finite numbers of moments can give a negative
density f(z), particularly in the tails.

3.1 Percentage points approximation

A Gram-Charlier-type expansion can also be found for F(z), the distribution
function of X; this can be inverted to give a percentage point for a given cumu-
lative area &. Thus suppose F(z,) = a; we want an approximation to z,. A
Cornish-Fisher expansion gives ¢ — £ as a series in Hermite polynomials in
z, or (more practically useful) in £, where £ is the percentile corresponding to
« for the normal distribution, that is, £ is the solution of

/io n{z)dz = a. (1)

Again, problems can arise with the convergence to the desired z,. Ior more
details on mathematical expansions of Gram-Charlier or Cornish-Fisher type,
see Kendall and Stuart (1977, vol. 1).

4 Pearson curves and other systems

We now turn to a method of approximation which can be thought of as “laying
one curve upon another” — the approximating curve has parameters which can
be varied to make a good fit. The parameters are usually chosen by matching
moments or cumulants. Percentage points of the approximating curve, which
are tabulated or otherwise easily found, are then used as approximations to the
desired points.

A family of approximating curves is the Pearson system, where the (contin-
uous) density f(z) is approximated by f*(z), given by

1 df*(z) _ atz (12)
F(z) dzr  bo+biz+byz?

According to the values of the constants a, b, b1, 2, integration of the right-
hand side will take many forms, giving great flexibility to the system of densities
J*(z). With considerable algebra (see Elderton and Johnson, 1969, for details),
the constants may be put in terms of the moments:

Suppose A = 10pas; — 1843 — 12u2; then (13)
2
. = #3(#4: 3u3) (14)
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by = -/12(4112‘,:4—3115), (15)

b = —a (16)
e _ 2 _ 19,2

. o (2paps j;za 1245) (17)

Thus knowledge of the first four moments or cumulants of X will fix the con-
stants above: a further constant C enters on integrating, but is fixed by the fact
that the total integral of f*(z) must be 1.

4.1 Percentage points

When the constants are known, the density f*(z) may be integrated and per-
centage points solved for numerically. Over the years, this was done, at first
very laboriously, for a small range of possibilities, but a quite extensive tab-
ulation was made, using electronic computers, in the late '60s. These tables
are in Biometrika Tables for Statisticians, vol. II. The form of the tables is
as follows. The percentage points for X, the standardised X-variable given by
X = (z — p)/o, are plotted in a two-way table indexed by the skewness and
kurtosis parameters 3; and B2. These are defined by

13 Bs
B 2 and 3, P (18)
they have been defined to be scale-free, and /B, takes the sign of p3z. £
measures skewness: a large (positive) v/B; means the curve is skewed towards
positive values (long tail is to the right) and vice versa for negative /B;. A
large B> (always positive) means the density has heavy tails. Of course, all
symmetrtic distributions have §; = 0; a benchmark to measure kurtosis is the
normal distribution for which 82 = 3. Since k4 = u4 — 3u3, the parameter
v2 = P2 — 3 = K4/k% can also be regarded as measuring kurtosis, with value
w2 = O for the normal distribution.

Suppose, for a given S, we have v/B; = 0.8 and B, = 4.6. To use Biomeirika
Tables, one enters the appropriate \/B; table, \/B; = 0.8, and travels down
the left-hand column until the g, value, 4.6, is reached. Along the row are 17
tabulated percentage points for X, from a@ = 0.00 to a = 1.00. Interpolation
must be used for /By, B2 values not explicitly given.

4.2 Un peu d’histoire

At this point, perhaps, it might be permitted to enliven the account with what
the Guide Michelin calls un peu d’histoire. At the time Biomeirika Tables Vol.
IT were being prepared, I was fortunate enough to know Professor E. S. Pear-
son, then retired but still very active, especially as Editor of Biometrika. He
had collaborated with workers in the U. S. to get the tables (Johnson, Nixon,
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Amos and Pearson, 1963) and had carefully compiled the full set by hand. He
had introduced me to Pearson curves, which, to put it mildly, did not figure
prominently in statistical training of the day, and had shown me how effective
they could be. He gave me a copy of the tables to use. I undertook to write
a Fortran program on the IBM 650, to interpolate and find points, given the
first four moments. All 20 tables were then typed onto punched cards; in the
end, | got it down to approximately 45 minutes per table. This is not such a
dramatic piece of history as Michelin usually provides (assignations and assas-
sinations often play a prominent role), but a diminishing generation of modern
readers will still empathise with the fears of losing the boxes of cards, getting
them wet in the snows of Montréal, etc., not to mention the awful discovery of
a wrongly-typed number!

Since then, programs have been written to integrate the density equation
for f*(z) numerically and to solve for x4 for given a, or to provide the tail
area for given z; one of these, kindly given to me by Amos and Daniel (1971),
has heen added to my program; this greatly increases the range of §; and £,
for which Pearson curve approximations can be found. However, points are
still output from both the Amos and Daniel part of the program and by the
Biomelrika Tables part, ostensibly as a check where available, but truthfully as
a sentimental tribute to E. S. P.

Later on, Charles Davis and 1 (Davis and Stephens, 1983) added to the
program to enable a fit to be made using knowledge of an end point (for example,
that the left-hand endpoint of S is zero) and three moments. This is especially
valuable for the type of statistic for which each successive moment requires
exponentially increasing hard work — for example, the distribution of areas, or
perimeters, of polygons formed by randomly dropping lines on a plane — see
Solomon and Stephens (1977). The Pearson-curve fitting program is available
from the author.

Further developments have included algorithms to facilitate use of Pearson
curves — see, for example, Bowman and Shenton (1979a, 1979b).

4.3 Accuracy of Pearson curve fits

(a) Pearson curve densities are unimodal, or possibly J- or U-shaped, but never
multimodal. They are also never negative.

(b) Percentage points or tail areas found from Pearson curve fitting have been
found, for unimodal long-tailed distributions, to be very accurate in the
long tail, at least for tail areas bigger then 0.005, or the 0.5% point.
Pecarson and Tukey (1965) discuss this issue; Solomon and Stephens (1977)
give comparisons. (In making comparisons, one must of course compare
the Pearson curve fit with the correct z,, or the correct area for given z,
for a distribution which is not itself a member of the Pearson family.)
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(¢) Davis (1975) has made extensive comparisons with Gram-Charlier fits using
only four momeits. Pearson curve fits are better than Gram-Charlier fits
everywhere except for distributions very close to the normal, as measured
by the B8, f2 values.

4.4 Other systems

Johnson (1949) has proposed another family (divided into three parts) of curves
defined by four moments: for example, the Sy curves are those given by the
relation

£=9+86sinh™ ! X (19)

where X = (z — u)/o, and 7,8 are to be chosen to make the distribution of
£ as close as possible to N(0,1). A discussion, and tables to facilitate the
calculation of v and 8, are in Biometrika Tables for Statisticians Vol. I1. Other
authors have also proposed families of distributions, but they have not come
into such common use for the purpose of approximating percentage points.

5 Use of higher moments

We now turn to the first of two interesting questions — can higher moments
be used to improve the accuracy of Pearson curve fits in the long tail of the
distribution? The long tail will be supposed to lie to the right, as for the
distribution of S; then, since higher values of z will contribute more to the
higher moments than smaller values, we might suppose that fits using higher
moments will improve accuracy. Unfortunately it is not easy to establish the
four constants in terms of higher moments — of course, only four of these would
be needed to fix the constants. A recursion formula exists to generate higher
moments, for r =2,3,...

rbopy_y + {(r + )by +a}py + {(r +2)ba + 1}p74, = 0 (20)

In this recursion, the constants a, bo, §; and b2 occur, and this means that one
cannot reverse the recursion and generate |, say, 1 and o2 from 13, Ha, 5 and jg.

Nevertheless, one can generate the fifth and sixth moments of the Pearson
curve with the same first four moments of, say, S, and compare them with the
true fifth and sixth moments of S. The first two moments are then slightly
changed, and the procedure successively repeated, until the third, fourth, fifth
and sixth moments of cach curve match. This will mean that the mean and
variance of the Pearson curve will not be exactly the same as those for S,
although they will be close, and this will probably make a worse fit in the lower
tail; but for higher r the fit could improve. I have made some comparisons using
this procedure, but, as one might expect, there appears to be no systematic
improvement. In discussion, when this paper was first presented, the suggestion
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was made to use Least Squares to make “closest” fits, in order to compare the
six moments. More work is needed to compare Pearson curve fits along these
various lines, but it is not likely that the improvement will be sure, or will
extend to points far into the tails. In the end it must be remembered that one
curve is simply being laid on top of another, with only four parameters to vary,
and there is no mathematical analysis that will guarantee accuracy.

Other methods for developing accuracy in the extreme tails include numerical
inversion of the Characteristic Function (essentially the MGF with it replacing t,
where i = /—1), or saddlepoint approximations. A method due to Imhof (1961)
uses nun.crical inversion for distributions such as S, but the computer time
needed increases rapidly as the distance into the tails increases (to give small
tail areas). Field (1992) has recently examined saddle-point approximations for
S. These would seem to give more promise of tail-end accuracy in the long run.

6 Use of sample moments

The second interesting question is: how accurate are Pearson curve fits when
sample moments are used to make the fit? In the earliest days, this was the use
to which Pearson curves were applied — to find a smooth density to describe
a set of data, such as lengths of beans, or width of skulls. Kendall and Stuart
(1977, Vol. 1} gives details of such a fit. In general, the Pearson curves will give
very good fits to a unimodal set of data, or even to J-shaped or U-shaped sets,
but it is important to assess the accuracy of extrapolation from the sample to
the supposed population from which it came. More precisely, we ask how close
the sample fit estimate of, say, the upper-tail 5% point is to the true population
5% point, and, further, whether or not the Pearson-curve point is better than
the estimated point derived from choosing the appropriate order statistic — in a
sample of 1000, the 951st value in ascending order, or in a sample of size 10000,
the 950ist value. Some investigation of these questions has been undertaken in
two quite different ways, by Johnstone (1988) and by myself (Stephens, 1991).
The accuracy of the Pearson curve point will depend on:

1. the sample size n,

2. the a-level (tail area) of the point required,

3. the true skewness and kurtosis of the density approximated,
4. higher moments.

Johnstone gives a small study, for samples from populations with the following
range of parameters:

/1100 00 10 1.0 20
#2133 40 525 6.0 75
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Johnstone gives plots of the estiinated coeflicient of variation, CV, of the
Pearson curve z, against — log o , where the base of logarithms is 10. Thus the
CV of the estimated zg0 is plotted against 2, that of the estimated zg oo is
plotted against 3, etc . The coefficient of variation is estimated using a Taylor
series approximation. As one might expect, the CV goes up markedly as « gets
smaller (so —loga gets larger on the z-axis), and the steepness of the rise is
greater {or the more skew distributions .

In Stephens (1991), Monte Carlo samples were taken from populations for
which exact percentage points could be found, and the exact points were com-
pared with those obtained from (a) Pearson curve fits using the moments of
each sample, and (b) the order statistic estimate from each sample. The order
statistic estimate will be asymptotically unbiased, while one can say nothing
exact about the point obtained by laying one curve on another; recall that sam-
ple moments, especially the third and fourth, are extremely variable, even for
quite large samples. The results showed, as expected, that the Pearson curve
points were more biased. However, somewhat surprisingly, they had smaller
mean square error. Therefore, it might well be preferable to use the Pearson
curve points, although, again, more investigations should be made especially if
the points required are far into the tail.

7 Goodness of fit using moments
In this second part of the paper, we discuss how moments are used in Goodness-
of-Fit, that is, to test whether a random sample comes from a given (continuous)

distribution. The distribution will often have unknown parameters, which must
be estimated from the given sample.

7.1 Tests based on skewness and kurtosis

Suppose the r-th sample moment m, about the mean is defined by
1 n
- — [ Q— »\7 ’
mr =~ ,E___,(I. E). (21)

The sample skewness and sample kurtosis are then defined by

m3 m
by = —2 by = —x.

These statistics are not unbiased estimates of 8; and 2, but they are consistent,
that is, the bias diminishes with increasing sample size. The sample skewness
and kurtosis are time-honoured statistics for testing normality, having been used
in a rather ad hoc manner for most of this century; b; is compared with zero,
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and b2 with 3, the value of F2 for the normal distribution. However, distribu-
tion theory of b; and b4, 1s difficult, and it is only since computers have been
available that extensive and reliable tables of significance points have existed for
these statistics. Further, b, and b2 can be combined to give one overall statistic
(d’Agostino and Pearson, 1973, 1974; d’Agostino, 1986). For other distributions
Bowman and Shenton (1986) have also given tables for these statistics. Stud-
1es have chown that skewness and kurtosis, especially combined, provide good
omnibus tests for normality, although less is known for other distributions. For
the important discrete distribution, the Poisson, all cumulants are equal to the
mean, denoted by the parameter A; a time-honoured test for the Poisson is
based on the ratio of sample variance to sample mean, which of course should
be about one. Again, this simple statistic appears to compete well with others
in terms of power.

7.2 A formal technique based on moments

Perhaps because of the variability of sample moments, which makes calculation
of significance points difficult for statistics based on these moments when calcu-
late from samples of reasonable size, it took some time to formalize a technique
based on moments. Gurland and Dahiya (1970) and Dahiya and Gurland (1972)
have however devised a general procedure. The essential steps are as follows:

1. A vector { of length s, say, must be found, whose components ¢; are func-
tions of the theoretical moments, and such that each component ¢; is linear
in the parameters. (This might involve re-parametrising the distribution
from its usual form).

2. The estimate h of { is obtained by replacing theoretical moments by sam-
ple moments.

3. The test statistic is then based on the difference h — (.

Suppose that ¥ is the covariance matrix of h, # is the g-vector of unknown
parameters, and W is the s x ¢ matrix such that { = W#. Then dcfine

Q: = n(h— WS~ (h — Wh),

where § = (W/S-1W)~'W’£~1h. The statistic § is the regression estimate of
f obtained by generalized least squares, and ¥ is ¥ with the estimate 8 used
wherever 8 appears.

Gurland and Dahiya (1970, 1972) showed that, asymptotically, the test
statistic Q; has the x* distribution with ¢ = s—g¢ degrees of freedom. Currie and
Stephens (1986, 1990) have studied the procedure, and show several properties
of Q:. Among these are the fact that the test statistic ; can be broken into
t components, each with asymptotic distribution x2, and each testing different
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features of the distribution. Each component is a function of moments or cumu-

lants. For example, consider the test for normality, that s, for the distribution

N(u, %), Gurland and Dahiva (1970) took ¢’ = {u,logua, u3,log(ua/3)}, so
1 0

that ' = {i,logms, mj,log(m,4/3)}. The matrix W is W = , and

o oo

!
0
2
8= [ l():og ] . The test statistic Qg becomes é;+¢é2, where the two components
are & :'nm'g’/Gm".f, and ¢y = (3n/8){log(ma/3m3)}. Thus the ucthod leads to
nby /6 and (3n/8)log(bs/3) as test statistics, equivalent to the “old-fashioned”
by and ba.

However, it should be noted that the components are not unique; they de-

pend on how ( is formed. Currie and Stephens (1986, 1990) discuss these
questions in some detail.

8 Components of other goodness-of-fit statis-
tics

Other goodness-of-fit statistics also have components which are f{unctions of
moments. The oldest of these was proposed by Neyman (1937), in connection
with a test for uniformity.

A test for a fully specified continuous distribution (that is, all parameters
known) can always be converted to a test for uniformity by means of the Prob-
ability Integral Transformation, and a test for the exponential distribution can
also be so converted, even when the scale and origin parameters are not known,
so that Neyman’s test has wider applicability than it might at first appear. (For
details of these transformations, see Stephens, 1986a, 1986b).

Neym.n's test is as follows: suppose the test is that Z has a uniform dist.ri-
bution hetween 0 and 1. written {/(0,1). On the alternative, let the logarithm
of the density of Z be expanded as a series of Legendre polynomials:

log(f(z)) = A(e) {1+ e1L1(2) + c2La(2) + esLa(z) + - -}, (23)

where the ¢; are cocfficients, components of the vector ¢, L;(z) is the i-th
Legendre polynomial, \nd A(¢) is a normalising constant.
A test for uniformity is then a test that all ¢; = 0. The estimates of ¢, are

¢ = Z Li(z;) (24)
j=1

where 21,22, ..., 2z, is the given sample.




The first few Legrndre polynomials are best expressed in terms of y = 2—0.5.
Then

Li(z) = 23y, (25)
La(z) = VB(6y" —0.5), (26)
La(z) = V7204 - 3y), (27)

so that the estimate ¢, hecomes a function of the first moment about the known
mean J.5, the second estimace é2 hecomes a function of the sccond mome.t, é3
a function of both the third and the first moments, etc.

Neyman shows that the suitably normalised & have asymptouc N(0,1) dis-
tributions, and his overall test statistic is the sum of the squares of these nor-
malised estimates. Thus the overall statistic has an asymptotic x? distribution,
just as for the Dahiya-Gurland statistic, and the individual terms, based on
moments, are the components of the overall test statistic.

9 EDF statistics

Another important family of goodness-of-fit. statistics 1s that derived from the
Empirical Distribution Function (EDF) of the z-sample. This family includes
the well-known Kolmogorov-Smirnov statistic and the Cramer-von Mises family
of statistics (for details and tests for many distributions based on these, see
Stephens, 1986a).

One of the most important of the Cramer-von Mises class is A%, introduced
by Anderson and Darling (1954). The definition of A? is based on an integral
involving the difference between the EDF and the tested distribution F(z) (with
parameters estimated if necessary). The working formula is

" 1 .
A= —p — - 2(21 ~ 1) [log 25y + log(1 = 2(n+1-0))] (28)

where z; = F(r;), and z4y are the order statistics.

As an omnibus test statistic, A> has been shown to perform well in many
test situations.

Anderson and Darling showed that the asymptotic distribution of A2 is,
like S of Section 1, a sum of weighted x> variables. The individual terms
in the sum can again be regarded as components of the entire statistic, and
Stephens (1974) has investigated these components in some detail. A remarkable
result is that they too are based on Legendre polynomials, so that they are
effectively the same as the Neyman components, hased on moments of the z-
sample. There has been some investigation of components of these and other
statistics, as individual test statistics for the distribution nnder test; references
are given by Stephens(1986a). As for the Gurland-Dahiya components, they can




be expected to be sensitive 1o different departures from the tested distribution.
The complete test statistics of Neyman and of Anderson-Darling combine the
same components. but with ditfferent weightings.
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Abstract

Higher-order statistics (HOS) are now very widely nsed. Two areas where they
begin receiving considerable attention are array and speech processing. This paper
describes some recent applications of IHOS in both areas by the authors [16]-[20].

In our speech processing application, we demonstrate a wav to better discriminate
between voiced and unvoiced speech. This is accomplished by observing the behavior
of a cumulant-based adaptive filter, and makes use of the fact that unvoiced speech is
Gaussian, whereas voiced speech is definitely non-Gaussian. We have also shown a way
to utilize the prediction residual from the adaptive filter to estimate the pitch period
for voiced speech.

Array processing encompasses a multitude of problems, including beamforming
and direction-of-arrival (DOA) estimation. We have developed fourth-order cumulant-
based blind optimum beamforming algorithms that outperform existing methods. The
term blind indicates that our methods do not require a priori knowledge of array geom-
etry and DOA. nor they are affected by multipath propagation and presence of smart
jammers. Extensive simulations support our theoretical claims on the optimality of
our beamforming procedure.

1 Introduction

Our work on specch processing deseribes a method that consists of an adaptive predictor, a voicing,
decision (V/UV). and a pitch period estimator. The focus of this study is on rohnst detection of
speech state and estimation of piteh period. This is accomplished by observing the behavior of an
adaptive predictor which processes the speech signal. Higher orders statistical analvsis is proposed
for discrimination of speech states. Comparing the cnerey ol the origival speech <ienal with that
of the prediction-error residual vields the decision method. Both covariance and cumulant-based
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prediction methods are investigated and the latter is shown 1o be o more robust way ol making
(V/UV) decision.  Piteh estimation is accomplished by using correlation-based approaches that
operate on the energy estimate of the cumulant-based prodiction residual rather than the original
speech signal. Pitch estimation by our method yields better performance than currently existing
hatch prucedures.

Array processing work, as described in this paper. addresses the problem of blind optimam
beamforming for a non-Gaussian desired signal in the presence of interference. Sensor response.
location nncertainty and use of sample statistics can severely degrade the performance of optimum
beamformers. In this paper, we propose blind estimation of the source steering vector in the pres-
ence of multiple. directional. correlated or coherent Gaussian interferers via higher-order-statistics.
In this way. we employ the statistical characteristics of the desired signal to make the necessary dis-
crimination, without any a-priori knowledge of array maunifold and direction-of-arrival information
about the desired signal. We then improve our method to utilize the data in a more etficient man-
ner. In any application, ouly sample statistics are available. so we propose a robust beamforming
approach that employs the steering vector estimate obtained by enmulant-based signal processing.
We further propose a method that emplovs both covariance and cunmulant information to combat
finite sample effects. We analyze the effects of multipath propagation on the reception of the desired
signal. We show that even in the presence of coherence. cumulant-based beamformer siill behaves
as the optimum beamformer that maximizes the Signal to Interference plus Noise Ratio (SINR).
Finallv, we propose an adaptive version of our algorithm. Simulations demonstrate the excellent
performance of our approach in a wide variety of situations.

2 Cumulant-Based Adaptive Analysis of Speech Sig-
nals

Voiced /Unvoiced (V/UV) decision is an important problem in speech processing. Almost all speech
coding, recognition and speaker identification systems reqguire this information for an eifective
processing of speech data. In addition. low-delay speech processing svstems require this decision
be provided in real-time. In [2] some comnonly emploved features are described. and a subset of
them are used to train an artificial neural network to perform V/UV decision.

In frame-bhased analysis of speech signals. feature extraction is performed on the current block
of data. and a decision is given at the end of the period. For this reason. frame-based methods
are incapable of tracking rapid changes in signal characteristics. Transitions of the state of speech
within a frame period affect the decisions resnlting from a frame-based analvzer. In general. this
mixed state of speech within a period can not be dentified awd incorrect decisions will be made.
This will degrade the performance of the averall specch processing system. In addition. frame-based
analysis introduces delay. which may not be tolerable in low-delay svstems.

Severe non-stationarity observed in speech signals and low-delay reguirements of the contem-
porary speech processing svstems motivate the use of adaptive algorithms for feature extraction
in place of their batch counterparts. Iu general. adaptive processing techniques are designed to
minimize some least-squares error criterion. Their use is motivated by the assumption that the
processes are Gaussian and the performance analvsis is tractable with this assamption [3): bow-
ever. this approach ignores the non-Ganssian natore of the nnderlyine sienal.

Adaptive prediction of the incoming sienal and continuans monitoring of prediction error pove
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Pigure 1: Typical speech sienals: (a) Unvoiced speech. (b)) Voiced speech,
g M |

makes detecting changes in the spectral characteristios of the process possibic. We may consider
such a change as an ceent. After an event, an adaptive nnit will reguire a period 1o adjust iteelf
for the new configuration. During this learning period, prediction error power will tenporariy
increase. This observation was nsed in [35]. ta detect abrupt changes in the antoregressive (AR
parameters of a Jinear process. I a lattice form is veed rather than a finite impiise response (FIR)
filtter, reflection coeflicients will be availeble for monitoring purposes. In addition. adaptive lattice
filters exhibit better learuing charocteristies than their FIR counterparts. This may improve the
ability to localize the event when prediction error power is monitored.

Tu this study, we shall investivate the application of adaptive prediction methods 1o detect
V/UV transitions in speech signals: hence, events of interest will he V/UV or UV/V trapsitions,
Our approach will take the speech production model into aceonnt and utilize Ligher than second-
order statistics of speech signals.

2.1 Speech Production Model

The state of speech signal belongs to thiee categories: voiced, unvoiced and silence. Stlent periods
can be detected easilv by monitoring zero crossing rate and energy of the received sienals 15300 oy
this reason, we shall concentrate on voiced /unvoiced classitication of speech.

Unvoiced sonnds are generated by forming o constriction at <ome point o the vocd traet
and foreing air through the constriction at a hieh velocity to produce turhulenee. This creates
a broad spectrum noise source to exeite the vocal tract. The enerpy concentration is <hified to
the high-frequency end of the spectram for unvoiced sounds, hat the speciram is relarively fhn
when conpared with that of voiced speecti, e to large nnmber of random effects invalved in the
prodiction of nuvoiced speecit. Ganssian noise is a valid condidate as the excitation sources This
assnmption is validated by Wells 17300 Iy his work. the Bispectpnng is nsed to make ViUV deciion,

It has been found that bispeetrnes of Foolidy fricatives tend to zero, but for vowels the situntion
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Figure 2: Adjacent sample correlation of speech sienals,

just the opposite. A tvpical unvoiced segment of speech is shown in Fig. la.

Voiced sounds are produced by forcing air throngl the glottix with the tension of the vocal
cords adjusted so that they vibrate in a relaxation oscillation. thereby producing guasi periodie
pulses of air which excite the vocal tract. This excitation is clearly non-Gaussian, The encras
concentration is in the low-frequency side of the spectrum in the form of & fandamental component
and its harmonics, In addition. voiced sounds have more energy than unvoiced sounds. A tvpical
voiced speech segment is shown in Fig. 1b.

For voiced sounds. the vocal tract can be modelled as an adl-pole linear svstem. The same miodel
also holds for unvoiced sounds but the AR order is less. Correlation between adjacent samplos is
high for voiced sounds. On the other hand, unvoiced speech resembles white noise sinee its spectram
is relatively flat, vielding small correlation between adjacent samples. Correlation sequences for
voiced and unvoiced cases are tllustrated in Fig. 2.

The differences in the excitation and corvelation properties for these two cases can beoused )
discriminate between them; however, with second-order statistics we can only nse the correlation
properties but can not utilize the information about the excitation model. Phis motivares the e
of higher-order cumulants of speech signals.

2.2 Our Approach

In the previous section. we mentioned the distinetions hetween voreed and unvoiced connds: corpe
lation among adjacent samples and excitation models. In thos seerionowe shadl investionte nethod:
that fully utilize this information,

Lincar prediction (LY mett ads arve emploved to accomplish onr goal: however we shall pot e
batch-tyvpe methads for reasons ontlined previously, Linear prodiction can he based oo second or
higher-order statisties, however the former is usually emnploved. Linear preaioiiog bs eswrmtinlih

identifvineg the inverse of o linear systen driven by white noter henees i can oe copsidored g

2360




svstem identification problemi. The svstem under consideration can be approximated by an AR
model. so an FIR prediction filter will whiten the specirum of the incoming signal.  We shall
investigate the differences between cumutant-and covariance-hased adaptive prediction methods in
this section.

2.2.1 Second-order statistics based adaptive filtering

Correlation-based adaptive prediction filters tend to minimize the prediction error power at the
output of the filter. Since correlation among adjacent samples is high lor voiced signals, we can
remove a large proportion of energy from the original speech signal using prediction. On the other
hand, in the case of unvoiced sounds, LP will not be that successful due to small correlation amone
samples. Therefore, a comparison of the input signal power with the power in the prediction residual
will reveal the state of the speech signal.

lLattice prediction filters enable monitoring the variation of prediction error power with model
order due to their specific structure. Auntoregroesive model-order-selection can be performed by
selecting the tap which results in minimum prediction-error power. This leads to another dis-
crimination between voiced and unvoiced sounds | since this order will be relatively lower for 1l
unvoiced case.

2.2.2 Fourth-order statistics based adaptive filtering

In this section, we shall investigate the behavior of a fourth-order cumulant- based adaptive filter,
An adaptive algorithm for estimating the parameters of nonstationary AR processes, excited by
non-Gaussian signals is proposed in [65], and some modifications are suggested in [22]. We used
the method of [65], which is in the software package i — Spee™ ' (trademark of United Signals
and Systems, Inc.) [33]. The ideas for the covariance-based filter directly apply 10 this case with
one important exception: the cumulant-based adaptive filter provides the solution to the cumulant-
based normal equations, and this solution is net the one that minimizes the prediction- error power;
however, one may argue that if the speech production system can be identified accurately, then the
prediction error should be close to the minimum possible value.

With higher-order statistics, we have the diversity of using the excitation information: for
voiced sonnds | the excitation is non-Gaussian; hence, the speech production mechanism can be
identified by cumulant-based AR equations. On the other hand. for unvoiced sounds the excitation
is Gaussian, making the identification problem ill-poscdt The cumulant-based adaptive filter will
not be able to identify the system and, sinee there is no associated oulpul-power minimizalion
criterion, prediction-error power may arbitrarily increase. In this case. a cutnulant-hased filter mav
even amplify the speech signal making the power reduction by prediction comparison more clear
than when using a covariance-based method.

To validate our ideas about covariance and cimnlant-hased adaptive prediction of speech signals,
we performed some experiments using data from the TIMIT speech recognition database. The
results verify onr claims and are provided in the next section.

YA cuinulant-based filter provides the solution of ctmulant-based normal eqnations in an adaptive fashion.
however, this set of equations becomes trivial when the input to be analyzed s w0 Gaussian linear process,
because higher than second-order enmmlants of Ganssian processes are 7ero
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2.3 Experiments

We start our experiments by investigating the prediction performance of correlation-and cumulant-
based linear predictors in voiced speech case.  An indication of performance is the energy of
prediction-error residual at the output of the filter. For this purpose. we selected a voiced speech
segment from the TIMIT database and performed adaptive filtering based on both correlation and
cumulants. We expected that the correlation-based filter would yield better perforinance, since it is
designed to minimize prediction-error power. The original speech signal is scaled so that estimate
of its variance is unity. The results of this experiment are shown in Fig. 3. Energy values reported
in this figure represent the estimate of the variance of the signal averaged over the data window.
Interestingly enough, the cumulant-based filter performed better than its covariance counterpart,
although the latter is designed to minimize the power of the prediction residual. We repeated this
experiment with other speech segments and in all of the cases. cumulant-based filter outperformed
covariance-based filter.

In voiced speech, a conventional system identification approach for estimating the AR param-
eters, using a least-squares fit procedure, suffers due to the nature of the excitation sequence. It is
known that, for voiced speech, the source is definitely non-Gaussian ; it is quasi-periodic in nature
with spiky excitations. The impulsive nature of the excitation in voiced speech is exploited in {40],
by making a Bernoulli-Gaussian assumption to develop a multipulse coding scheme. In [39] . a
robust linear prediction algorithm is proposed which takes into account the non-Gaussian nature of
source excitation for voiced speech by assumiug the excitation is from a mixture distribution. such
that a large portion of the excitation sequence is from a normal distribution with small variance
while a small portion comes from an unknown distribution of higher variance. Such a distribution
is called heavy-tailed Gaussian. Based on the above mixture model. a linear prediction algorithm
is devised which employs robust statistical procedures { developed in [34] ) that operate in a batch
mode. Although satisfactory performance is observed. the method can not track the transitions
in the input data. This points out a very important fact : conventional linear prediction can be
unsatisfactory due to incorrect modelling of the excitation. Of course, this carries over to the
adaptive domain, i.e., a correlation-based adaptive algorithm may not be able to vield the best
possible fit in the presence of outliers in the data. On the other hand, a non-Gaussian excitation
is required by higher-order-statistics-based identification algorithms. A cumulant-based adaptive
filter is able to reduce the power in the signal by effective prediction, although it is not based on a
criterion for minimizing the power of prediction residual. Power reduction may be even more than
that provided by a covariance-based filter due to the just described outlier problem.

To analyze the behavior of adaptive predictors in voiced and unvoiced speech states, we selected
a 250 msec period of speech segment in which there are two transitions: voiced (0-75 msec), nnvoiced
(75-190 msec) and again voiced (190-250 msec). This signal is shown in Fig. 4.

We used an order ten predictor for adaptive filtering of the speech waveform. Figure 5 shows
the prediction-error from a covariance-based filter.  Observe that an adaptive filter based on a
power minimization criterion will turn off during the unvoiced period: hence, this segment passes
undistorted through the filter. The reason for this (as explained previously) is the small adjacent-
sample correlation for nnvoiced sonnds which makes the process unpredictable. To minimize the
ontput power.the filter turns off: however, during voiced segments deconvolution is successful. We
observe a quasi-periodic pulse train for the prediction residual, which is in accordance with the
excitation model for voiced speech production.
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Figure 5: Prediction residual from covariance-based adaptive filter: (a) first 125 msecs. (b)
last 125 msecs.

Figure 6 depicts the cumulant-based filter residual. During voiced periods, successful decon-
volution is possible since the excitation is non-Gaussian. and again a quasi-periodic pulse train is
observed at the output of the filter. Now, however, the filter amplifies ihe speech signal during
the unvoiced segment. As explained before, during this mode of operation, the system identifica-
tion task is ill-posed, and, since this filter has no power minimization criterion, the power of the
prediction residual becomes higher than the unvoiced speech signal.

To make better comparisons concerning the energy of the original speech and prediction resid-
uals, obtained via the two different filters, we illustrate the energy estimates in Fig. 7. Energy
is estimated by first squaring the signal and then performing low-pass filtering using a 15 point
Hamming window. Fig. 7 shows that, by comparing the prediction-residual power and the original-
signal power, it is possible to make reliable V/UV decisions. With the cumnlant-based method.
even better results are obtained, because it amplifies the input data during unvoiced periods.

The observations from this experiment, validate our carlier statements: however, using a predic-
tor may bring additional advantages as well. One important by-product is pitch period estimation.
Pitch period is the time difference between the quasi-periodic excitation pulses during voiced speech.
After the V/UV detection step. better pitch estimation is possible by operating on the energy esti-
mate of prediction-residual rather than on the original speech signal. From Fig. 7. we observe that
the peaks in the energy estimate sequence are spaced by a piteh period during voiced periods and
they are sharper than the ones in the original speech signal due to combined filtering and squaring
operations. Consequently. we may apply the correlation-based approach described in [18] to the
energy estimate sequence, for a reliable, simple but robust calculation of pitch period. In [18]. pitch
estimation is accomplished as follows: low-pass filtered speech signal is quantized to three levels:
-1.0.1 and the correlation sequence of this quantized signal is obtained. Covariance calculation is
simple with the quantized sequence, since it can be performed only by addition. Finallv, a peak-

picking method estimates the piteh period. Peak-seareleis performed on the possible range of values
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that pitch-period can take. which is called the admissible piteh range. We applied this method to
the energy estimate of prediction-residual from the enmulant-based predictor that processes the
speech segment in Fig. 10 The orieiual signal and piteh estimates are given in Fig. 8. The deci-
sious and estimates agree with the signal chiaracteristies. Results from the correlation-based filter
are also accurate for this speech segment: however, the accuracy of the correlation-based method
depends more on the threshold emploved e comparing the power of prediction residnal to that
of the input. than in the cumulant - based counterpart, since the latter amplifies unvoiced speech.
Therefore. we can observe deeradation in the correlation-based case sinee it is sensitive to the value
of the threshold.

Yhe second voiced speech seoment in Figo 1 is an example of the situation when harmonies
are stronger than the fundaental requeney component. In general. correlation-based approaches
operating directhy on the speech signal Tail when this event is present. To demonstrate this. we im-
plemented the method deseribed in 371 Tn [37] piteh estimation is accomplished by caleulating the
corpelation sequence of the low-pass filtered speech sienal. and emploving a peak-picking algorithm
on the correlation sequence. Peak searching is done on the admissible pitel range. For reliability
parposes. the aleorithn also investigates the possibility of piteh errors, by checking for peaks at
one-half onc-thivd. one-fonrth. oue-fiths and one sixth of the fiest estimate of the piteh period. if
they are in the admissible pitels ranges Boa peak at these Jorations is Tareger in amplitude than half
ol that of the current estihiate, the pitelr estimate i chianeed to the location of this peak. Tn our
experiient. the pitelo detector of 3T Hacates the ador peak at lae 650 however, its decision rule
identifies another peak aronnd Fse 31 which i~ in the admissible pitel range. Sinee the amplitude
of the peak at Tag 34 is farger than half of thiat of the wajor peak. the Hual pitell estimate is chosen

to he half of the correct valne, which = a0 gross error,
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Fioure 70 Energy estimates. (a) Oviginal speech signal: (h) cnergy estimate of original
specelr signal: (o) enerey estimate of prediction-error residual from covartance-hased tilter.

{d) energy estimate of prediction-crror residual from caumulant-based filter.

2.4 Conclusions

In 1his work. we showed that it is possible 1o track trausitions in the stare of speech using adaptive
lincar prediction. Both covariance and cumulant-based methiods are investigated, and greater
contrast between V/UV cases is demonstrated by the latter method because cumulants can use
the difference in the excitation model of the two speech states.

Piteh-period estimation is also possible by dinear prediction. Rather than operating on the
original sienal. we prefer to emplov the prediction-error resia tal availabile from an adaptive filrer
Cunmulaut-based approach operating on the power estimate of the residual process is stowe s be
a practical wayv of pitch estimation,

We investigated the prediction performance of adaptive predictors based on correlation and
enmulants and fonnd that comulant based prediction can ontperform corvelation-based prediction.
althongl the Tatter is designed to nanimize the power of the prediction resianal,. We conjectured
that ontliers i the excitation model of voiced speech resnlt in this phenomena. Better predic
tion performance obtained via commfants is worth investieating analvticallv: however, this is niot
tractable with real or svnthesized speecl sinee there are many paraimeters involved. Simpler cases,
stclias o sinele simsoid in Ganssian noise can be analszed 1o evaluate the perfonnance of emmnlant

and covarianeehased adaptive-ine enhancets.
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Fionre S0 Pitehi-period estimation experiment. (a) Orviginal speech signals (b)) energy es-
tinate of prediction-crror residual from camulant-based filter: (¢) piteh contour obtained
by processing energy-ostimate sequence using the method in (18] and (d) autocorrelation
sequence of the second voleed specch segment processed by the method in [37]0 leading to a
OroNs Crror,
Ps . . .
3 Cumulant-Based Blind Optimum Beamforming
Array processing technigues play an important role in enhancement of signals in the presence of
aterfercnce. N mnmber of books. and aneextensive literature [13.30-32.42.401.50.6:1.68] have alrendy
been publishied. Capon™s minimumn variance distortiondess response tNIVDR ) beamformer [8] has
been a startine point for both sienal enbiancement and hieh-resolution divection-of-arrival (DOA)
estiation,

In recent vearse there has been ane inereasing mterest e highresolition array processing
techmiques based on cleendecomposition of the covariance matnix of reeeived signals [1L17.26-
2736355660 616971 Lo recover the signal of interest in the presence of interfering signids, the
soccndled COPY funetion x5 is used. T this procedure, DON S Tor all signals are first estimated.
and then the minhmum vaaianee processor that reconsirnets the desited signal and minimizes the
contribution ol all iwterterence sonvees 1= nplewented. AL of the previonsiy referenced wetlods
rely o complete knowvledee of tesponses and locations of array elenewr s and/or DON fonmation

- ob the desired sieral.
I the oy taefold s vnknow s or there are uneertainitios, it s then necessary to calibrate
.
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P arvay 50720 iowever, this is o practical thing to doosinee calibration must be doue quite

frequentiv, ands each thae, array - manifold information must be stored. In addition. calibration
sorrces nun be required. Fven small errors in the calibration procedure may considerably degrade
the perforniance. Seusitivity analvses of high-resolution methods and MVDR beamforming have
been presented e THLI20HL16.21.25,20.70.76].

B this ~stadys we shall employ higher-order statisties of received signals to estimate the steering
vector of the nons Gaossian destred sigual in the presence of directional Gaussian interferers with
shuown covartance strncture. We assintie no knowledee of array manifold, and DOA information
abonr the desteed signal. Desived sienal niay be voiced speech. sonar signall cadar return or a com-
nendcation sienals Tooonr work, we specialize to the communications scenario. which reqguires the
n=e ol fourth order comaliod - Followine o mathematical formulation of the problem in Section 3.1,
wedesorthe blind estination and optimnmm beamforming procedures in Section 3.2.

A estination provednre is subject 1o errors, as is onr cumulant-based source steering vector
e~tiunation tethod, Inotheory, camunlants are blind to Gaussian noise; however. their estimates are
corrnpted by sich wonses lcorder to obtaan satisfacrory results longer data lengths are necessary in
cattnbant based Sienal processing. To alleviate the effecrs of estimation error in the beamforining
~tepwe propose somore cfficdient estiiation procedure that fully utilizes the data acquired by the
arranve We fiprther sueeest aometaod of combinine cnmulant and covarianee information to yield
Devter estipates. Thien we emplov o robnst beamforming method hased on artificial noise injection
toccotbat mismatcl i the sonree steering vector. We consider the estimation ervor as a mismatceh

N

andd snecesstully applhy this tobast approach 1o onr problem. These methods are presented in
Section 49

Incccnmunmications eovironment abvipath propagation abmost always take piace, In this case.
all vieendicouposition hased technignes aud MV DR fail. Only in some specific array configurations
st possible to decarreiate incomine sienals and then estimate their DOA's. We analvze the
et tor ob onr cutelant based approach i Section 3.0 We show that our proposed approach
Dt es a- e optiniim beamtormer that niaximizes the Signal to Interference plus Noise Ratio
SINR

Forveal i operanion v necessary requirement i cotnmuitications applications) we propose
atcdaptive imolementation of the comulant based heamwtormer in Section 3.5, We then present
soniation cxperiment - to indicate the performanee of onr approach 1 Section 3.6, Finally, we

G oni cone b s Sedtion 4T

3.1 Problem Formulation

Mo tanmbare cor protdenn g narrow bhand Lshion. Inoarray processine. o problem is classified as
pecochand e sienad bandwidrh e sinadl companed to the reciprocal of the time required for
Pl cenal s etiont toopropacate acros - the arravs For oo disenssion on bandwidth, see [60.63],
P o torscilation lower and apper case italic Tetters are used to represent scalars, lower case

soabed ot et ter s e e bon vecbog s and L upper case hold fout letters are nsed for matrices,

301 Signal Model

Convnr o o8 T e et arbittaay senson tesponse chiaracteristios and locations,

T N L TR S A ORI T S TN IRV B [N TAR TO) PR AN B! oo o and anon Gamsstan
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desived signal d(t). centered at freguency w0 We assmine sonrees are Lar away ltom the array so
tHhiat o planar wavefront approximation i~ possible. The additive noise present s assumed 1o be
Gausstan with unknown covariance. Witly these assumptions  the veceived signal ot the bth seusor

can be expressed, s

g
Pl () ity X”U”,,} ) () (1)
g1

whoere,
o 6, : the direction of arrival of the wavelront corresponding 1o emitter .

o a (#,.}): respouse of the kh sensor to rth signal wavefrontsincluding the phase factor asso.
clated with the travel time of the signal wavefront with respect 1o a reference point: withont

[oss of generality, this point can be taken as the first sensor location.

o A1) the desived non-Ganssian signal as received at sensor Fowith variance o3,

o ol the prlcinterferer waveforn as recelved at sensor 1 interference signals are assitmed
1o be indeperdent of the desived sienal. and they are Ganssian processes,
e ity the additive noise at the brh sensor,
Fguation (1) can bhe rewritten in anal rix notation. as
rity dit) ) l
reh Nt 1t

alflgialh, oo ald ) i - i (:

b

ragtty ttt) nap(t)
where atf, ) represents the Vsl steerineg vector for the wavefront from cmitter . which can be
exprossed as
alt,

aytl s aal ) o aygH (3)

V!
!

We define the array manifold as the collection of steoring veetors over all DO s of interest. Alter-
native expressions for the received sienal vector are,
vily oo Azity ool - ait gy dihy o Apally v o) {1
I this last expression. we partitioned the VO 4 1) steering matns A as.
A [ albyy. Ajg i {H)
where the WX matrie Apis the steering tat rix for inlerferenee sonrees.

T this paper. we address the problens of optitnnn beamformine with an array of sensors whose
respanses and locations are completely anknowi: hencesalthongh we oy have a prion knowledpe
abont the diveenion of arrival of desired Sionallwe can nor perforn beamtormine dne to the lack of
hnowledee of wrray nmitold. T 280 this problem is addressed: however, (2307 aleorithm is Hmited
foca sinele intederence stenal. Wenveatieate the possibility of w more eoneral ~olution: namely,
signal vecoveryin the presence of mdtiple interferers whose correlintion <trnetinge is unknown. Before
presenting owr approach o which cmplove Tieher order atisties. we demonstrate the limitations ol

covariance based array proce<sine dor e problen
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3.1.2 Covariance-Based Approaches

Currently used high-resolution methods of DOA estimation and minimum-variance distortionless
response beamforming ( MY DR) employ the covariance matrix of signals received by the array. The
wavefront covariance matrix. S.is defined as the covariance of the source signals as received at the
reference point. i.e.. al sensor 1:

S = &{an 2z} (6)

where ()1 denotes complex conjugate transpose. Using the received signal model in (4). we can
express the W x M covariance matrix R of array measurements in the following two wayvs:

R = &ir(t) ey} = ASAY + R, = a3ada’(ds) + R, (

-1

where R, is the noise covariance matyrix.
R, = ¢ {n(t)nt'()} (R)
and. R, 15 the covariance matrix of the undesired signals. te..
R, = S{[A[fW + a0y [Apithy + nin M) (9)

In veneral. the noise covariance matrix. R,,. 1s unknown. With some restrictions on array ori-
cutation and noise covariance structure. some approaches tor high resolution DOA estimation are
that do not require this inforination: however, these techniques have their limi-

proposed in [17.52]
tations due to invalved assnmptions. Fayen with complete knowledge of noise covariance structure,
source localization is still inpossible without the knowledge of array manifold. In [56]. ESPRIT
aleorithm is devised to overcome this problem: however. ESPRI'T requires transitionally equiv-
alent subarravs with known displacement vectors. which may also be impractical due to all the
constraints on array orientation. In (21]. an eigendecomposition-based beamforming approach is
proposed which assummes the identtiability of the signal subspace and availability of the steering
vector information for thie signal of interest. Goad results were obtained under these assummptions:
however. this method can not haudle coherent interference and spatially calored noise.

I [9-10.57) © blind estimation of steering, vectors for independent emitters is discussed with the

following conclusion:

Biind estiniation of soirce steering vectors is not passible with only second-order
statistics. but eigploving higher-tlian-second order cutnulants, it is possible to estimate

sonrce steering vectors up toa scale factor,

MVDR beamdforining is an alternate approach for signal recoverve This approach however,
requires knowledee of the steering vector for the desived sonree up to a scale factor and uses the
covariance matrix R oof veceived sienals for processine. The outpat of the MV DR heamformer y(1)
can be expressed as [N

NN - -1 ¢ VIR
gttty — wirtty = L4 R7alb) | rf) (10)

where thie constant 4y is presewt to naintabi a specified response tor the desired signal and w
denotes the weight vector of the processar,

From the above expression. it i~ clear that MVDR beatnlorming requires knowledge of at#,).
Without knowledee of arvay nandfold it s uor possible 1o determine atf ;) even i the case of known

246




#;. Therefore. MV DR beamforming can not be divectly applied 1o our problem. Iy addition, the
MV DR beamformer is quite sensitive to errors in assumed sensor iocations and characteristies [11-
121 L'l?).T().T(i].

In many applications, multipath propagation takes place resulting in coherent sources. Coher-
ence presenits a serious problem to DOA methods; 1t leads to a singular source covariance matrix
S. for which it is not possible to estimate source locations except in some specific arrayv conligura-
tions [IN-19.61-62.66.7 L.75]. In the MVDR case. source cohereney does not represent a problem as
lone a»~ there is no source correlated with the desired signal; however, this sitnation is rarely met
i practice. Iu general. the desired signal is subject to multipath propagation. and performaunce
of MVDR approach degrades severely [51.78]. An optimum beamtorming procedure has been sug-
gested in [6] to overcome the coherence problem by using a linear array of elements with identical
directional characteristios,

We are therefore looking for a method that can overcome all these problems. In the next section.
we present an approach that accomplishes this by combining cumulant-based blind estimation and
MV'DR beamforming,.

3.2 Cumulant-Based Optimum Beamforming

In thie previous section. we discussed the problem of optimum beamfornng and concluded that it
i> not possible to ivcover a desived sighal in the presence of multiple nterferers. unknown sensor
noise covariance, multipath propagation and without any information about array manifold. in
this section. we propose a method 1o overcome these problems. We propose a two-step procedure:
higher-order-statisties for blind estimation of the sonrce steering vector. followed by MVDR beam-
forming based on second-order statistics ol received signals aud steering vector estimate provided
by the first step.

3.2.1 Estimation of desired signal steering vector

In this section. we ctploy cunulants of received signals, to estimate the steering vector of the
desired signal np to a coustant {actor. Thivd-order cumudants are blind to signals with svmmetric
probability density function, On the other hand. nost signals in communication environments have
svintnetric density functions. which motivates the use of fourth-order comulants?. First, we define

the fourth-order zoro-log conrulunt operator of complex processes L ()i eyt )}. as

cum Lag (0o U0 U oty S B s (O (0 = B eget bty B e (1))

B et F et ) - Rt (o) st} (i
Next. consider the vector ¢ = Jepoes eyt defined s
R R AN A RN PRI TIR A Y N A DR Vg {12

As suggested dn (130 there are varions wavs of defining fourth-order statistics of complex random
processes. We follow the approach presenied i (S in (1200 Sinee interference signals are indepen-
dent of the desired sienal wond thes are Ganssian with zevo fourth-order cnnnlants, we can express

“Anestumation proecdire based on taed oeder stanstnos s prosented [T




) as
et = cum {ag(Boys 0 a4 a0 a 85000 (13)

Using properties of camnlants, we abtain
. 2
ep = Ja 8001 all(80) vy ar(84) (14)

where 5y denotes the zoroth lag of the fourth-order cumulant of the desired signal. Defining
dy = Jay (8] alf(8,) 4,4 we have the following expression for the Mx1 vector ¢

c = 3 alby) (15)

Observe that the vector ¢ is a replica of the steering cector of the desived signal up to a scale factor.
We show in the next section how this information can be used to recover the desired signal.

3.2.2 Interference Rejection

With the knowledge of the steeriug vector of the desired signal. interference rejection is possible
using the following miniimum-varianee distortionless response formulation: find the weight vector
w that minimizes the power. w' R w. at the ontpni of the beamformer subject to the constraint
w! e — 1 where ¢ is obtained via the cumulant-based estimation procedure described in Sub-
section 3.2.1. The solution to this optimization problem is well-known [R]. and can be expressed
as

W, =3 R e (16)

where the constant 3, = (¢! R ¢ is present in order 1o maintain the limear constraint.

Due to the constraint wif

¢ = L. the power minimization procedure does not cancel the desired
signal. but rejects all interference components and sensor noise in the best possible manner. Note
that this is accomplishied withont knowledge of covariance structure of interference signals. sensor
noise or array manifold. Iu the sequel. we refer to the processor in (16) as CUM,. The proof
that this comulant-based beamformer is identical 1o the maximum SINR processor is provided in
Section 3.1, where the general multipath case is treated.

3.3 Robust Beamforming

In this section. we first propose an approach thar utilizes the received data iu the estimation of
the sonree steering, vector inoa more efficient manner. We then suggest a method that uses both
cutmifants and covariance information nnder some scenarios. Finallvo we emplov a robust method
to combat the effects of estimation errors.

3.3.1 Efficient Utilization of Array Data

In the previous section. we presented womethod of blind estimation of the Jdesired source steering
vector fron the received dataz however, the proposed approach s rather inefficient in the sense that
only the tirst sensor is taken o~ reference. For exaauple, if the conneetion from this element to the
processor i~ broken. thien the estimation objective can not he accomplishied. Simifarly. due to poor
recoiving cirenitry followine thi- arrav elements the reference signal mav be very noisy, degrading

the quatity of the estimate, We iy overcome these dilliculties by usine waltipie reference elements,
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Defire the matrix C with the (A./)th element,
Ci 2 cum{ri(t). 7'{’(1).7',{.’(1).7'1(2)} where k.l =1.....M. (17)

With true statistics, the cross-cumulant matrix C will have rank 1, since all its columns are scaled
replicas of the desired source steering vector; however. with sample statistics this condition never
holds. The left singular vector of C with the largest singular value can be used as the estimate of
the desired source steering vector removing the effects of noise. In this way, we utilize array data
more efficiently®. The heamformer that employs the steering vector estimate obtained in the way
described above is referred to as the (UM, beamformer in the sequel.

In addition. the Total Least Squares algorithm, that takes the errors in both the received data
covariance matrix estimate and the steering vector estimate into account. is a better choice for
computing the optimum weight vector. as suggested in (73], but it is computationally expensive.
If extra computations are feasible, we suggest the use of the Constraianed Total Least Squares
algorithm [1]. for even better numerical results.

3.3.2 Covariance-Cumulant (C’) Approach

In some array processing applications, sensor noise covariance structure has a definite structure
enabling a whitening operation on the received data. The principal eigenvectors of the covariance
matrix of this processed data reveal the subspace spanned by the steering vectors of directional
signals illuminating the array [5%]. Hence. the steering vector estimate obtained by the cumulant-
based approach can be improved by projecting this estimate ou the subspace spanned by the
principal eigenvectors of the covariance matrix. This improved estimate can then be used in the
beamforming procedure of Section 3.2.2. I'he motivation behind this approach is that covariance
estimates exhibit less variance than cumulant estimates. but in the covariance domain we can not
identify the source steering vector if there are multiple sources. This procedure vields an estimate of
the steering vector from covariance-mmatrix information by employing the cumulant-based estimate
as side information. A mathematical description of this approach is presented below:

I. From the received data. estimate the covariance matrix R and the desired signal steering
vector ¢ by the cumulant-based procedure.

"o

Performn au eigendeconmposition of the sample covariance matrix. to reveal the signal and
noise subspaces: the eigenvectors of R with the repeated minimuam eigenvalue span the noise
subspace [5%]. while the rest span the signal subspace.

3. Assume the signal subspace is (J + 1) dimensional. Then. the basis vectors for the signal
subspace. obtained from the eigendecomposition procedure. can be sorted in an Mx(J + 1)
matrix E; with the columu space identical to the signal subspace.

1. Project the countlant-based steering vector estimate c. on the signal subspace to obtain an
itnproved estimate ¢, . as
H
clmp = ESES C

5. Cotpute the weights for the heamtormer. as

-1
wllu/v = R' cuulr

SA method that utilizes the areay data even more efliciently is presented in{19].
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3.3.3 Robustness Constraint

Any estimation procedure is inevitably subject to errors. MVDR beamforming is extremely sensitive
to mismatch [11-12.14.16.29,70.76]. especially in high SNR conditions and in arrays with large
number of elements. A variety of constraints have been summarized in [68] assuming perfect
knowledge of element characteristics and locatiouns: however, in our case these methods are not
applicable since there is no available information about the array manifold to design effective
constraints.

Errors in the steering vector estimate result in signal cancellation. This mismatch condition,
arising from non-perfect estimation. can be viewed as the problem of optimum beamforming with
an array of sensors at slightly perturbed locations. In [15], a method that constrains the white
noise gain of the processor is proposed for the solution of the latter problem. In this section, we
use the same approach to alleviate the effects of estimation errors in cumulant-based optimum
beamforming.

In order to understand the mismatch problem and find a way to alleviate its effects, we need
to analvze the problem analytically. Consider the power response of a beamformer with a weight
vector w. as a function of DOA 8. defined as

P9) £ jwha(g)? (18)

with a(#d) denoting the steering vector for an arrival from #. The derivative, @P(8)/98. can be
expressed. as

, M ,

Q%@ = 2R {wa(8) | ; ” % a8y 1) (19)

Now cousider the following scenario: we have an MVDR processor looking at 6,. which is the
expected DOA for the desired signal. Instead. the source illumninates the array from 6; which is
verv close but not equal to 8,. In this case. the beamformer treats the desired signal as interference
and nulls it: however. due to the distortionless response constraint for ,. and since the angles are
very close. the derivative 9P(8)/9d8 must be large in magnitude for 6 between 83 and 6,. From
the derivative expression (19). it is clear that this is possible only if the norm of the weight vector
tcreases. since the inner product. wha(8). and. the derivatives. {,—'[, (1,“(9" };‘:{] are bounded. In
this situation. the constraint is maintained by increasing the angle between the weight vector and
the look-direction steering vector. This phenomena was exploited in [77]. for tuning the beamformer
to acquire a weak desired signal in the presence of strong interference.

Note that the white-noise amplification factor for any processor with a weight vector w is wHw:
heuce. the nulling phenomena can be prevented if the white noise level at the processor is sufficiently
high so that output power minimizatiou criterion limits the increase in the norm of w. This can be
achieved by perturbing the covariance matrix estimate of array measurements by a scaled identity
tmatrix as.

R, =R+l (20)
where ¢ is a non-negative parameter which adjusts the strength of perturbation. Alternatively, it

is possible to coin a term virtual SNROSNR, L defined as

SNR, = SNR = 1010g,, (—— ) (21)
a
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We then determine the weight vector as.

w:Rl’,'a(H”) (22)
A recent method presented in [15] performs this procedure in an adaptive fashion by a simple
scaling of the weight veetor. I onr rase. we do not have sonrce DOXN information, but we do have
an estitnate of the steering vector. [t is therefore possible to use this estimate in place of a(6,) in
(22) 1o formulate the cumulant-based processor with limited signal nulling property.

3.4 Multipath Phenomena

Eigendecomposition-based  high-resohution methods [4.17,26-27.36.3%,56.60-61,69,71] have proven
to be effective means of obtaining bearing estimates of far-field narrowband sources from noisy
measurements. The performance of these algorithms is severely degraded when coherence is present.
Several methods have been proposed to solve the coherent signals problem with restrictions on
array geometry [IN-19.61-62.66.7 1.75]: however, with lack of knowledge of array manifold it is not
possible to solve the coherence problem. MVDR beamforming also fails to perform optimally,
when interference signals are correlated with the desired signal  [51.78]. In some scenarios, even
the conventional beamformer outperforms the MIVDR approach due to signal cancellation in the
MVDR beamformer.

In Section 3.2. we showed that the cunmulant-based beamformer is not affected by the presence
of colierence among interfering Gaunssian signals as long as they are not correlated with the desired
signal. The same is not possible for high-resolution DOA estimation methods: but. the MVDR
heanforimer may perform equally well if the desived signal steering vector is known and a satisfactory
estimate of Ris available. In this sectiou. we show that the cumulant-based approach is not affected
by the presence of multipath propagation ol the desired signal. In addition, we show that the
cuniulant-bascd processor turns out to be the macimal-ratio-combine r 5] that maeximizes the SINR.

With the presence of multipath propagation or smart jamming. our signal model in (1) changes

to
I3 Vi
() = O Y an(Ba )+ ) ar(8,) )+ k() (23)
i=1 g=1
or m vector form
n
2 .
v(f) = | alfy ). alby ). - alfy,) Cf A+ Api(h) + n() (24)
.
where the set of scalars { oo oo ) coustitute the maltipath coeflicients for an L-ray scenario.
The set of vectors. { a(f;, ). a(f;, ). ... a(f;,) } are the corresponding steering vectors of the
L-rav model. Letting
m
-~ UN
b = | alf; ). ab, ). . a(by,) . = Apy (25)
i
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we can reduce the signal model for multipath phenomena to the single-ray propagation model of
Section 3.1.1,

r(f) = b d{t)+ Aji(t) + n(t) (26)
because we can view the vector b as a generalized steering vector for a single desired signal although

it may not be a vector in the array manifold. Therefore. following our work in Section 3.2, cumulant-
based blind estimation procedure will vield

c=34b (27)

where g4 = |b;]? b 44, in which b, is the first component of b. Incorporating (27) into the
constrained power minimization procedure, we obtain the following weight vector,

Weum = ,55 R—] c = 134/}5 R'_l b (28)

where 45 = (¢ Rt ¢ )7L

Next, we find an alternate expression for w.,,,. Recall that the optimization problem which
results in Wey,, is: minimize wHRw subject to wHe = 1, or by (27), whb = 1/34. We can express
the output power in the following way by using (9) and (26),

wiRw = o2 |wt b2 + wlR,w (29)

but. due to the constraint wfb = 1/:34, the first term in the above expression is a constant.
Therefore, the original optimization problem can be translated into : minimize w”R,w. subject
to wHe = 1 or equivalently. wHb = 1/3,. The solution to this problem is

Weum = "jti R;l c (30)
where Jg = (¢// R ¢)~'. Of course. this solution can also be expressed in terms of b, as
Wepm = rj’.' R;l b (31)

where 3> = 3,.3;.

Note that although (30) and (31) are alternate expressions for w,,,,. they are not the way to
actually compute w,,,. since R, is not available in general.

Next, we determine the weight vector that yields the maximum SINR. SINR can be expressed
as a function of the weight vector of the heamformer, as

2wawa

SINR(w) = o} W R w (32)
Defining. v = Ry wso that w = R;'% v, we can reexpress (32), as
SINR (w) = SINR{ R-V? v) = o2 VHVI;"‘C L (33)
Applyving the Schwarz inequality [50] to (33). we find that
SINR(w)= SINR(R Y v) < o2 RV b)) = 6ib"R'D (34)
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where equality holds if and only if

v=3sR;Y/2Db (35)

in which ;3g is a non-zero constant. Consequently, the optimum weight vector wging. which yields
: " . ~1/2 0=
the maximum SINR. cau be deterniined from w = R, /%y and (35). as

wsink = Js R;' b (36)

Based on this derivation. somne comuents are in order. It is clear. by comparing (31) and (36),
that the cumulant-based beamformer does indeed yield the maximum possible SINR, since w,,,
is just a scaled version of wgnk. This observation proves that the cumulant-based beamformer is
optimal. In addition. w,,, can be computed from the received data, whereas wging, as imple-
mented in (3G), requires knowledge of R,. which can not be determined from the received data in
the presence of the desired signal. Finally. note that robust approaches presented in Section 3.3
are directly applicable iu the presence of multipath.

3.5 Adaptive Processing

In real-world applications, adaptive beamforming is an important requirenent, especially when the
desired signal source 1s in relative motion with respect to the array. In this section. we address this
problem by providing an “estimate and ptug”™ tvpe of adaptive algorithi for the CUM; method.

The beantforming procedure (16) requires the inverse of the sample covariance matrix to com-
pute the weights. We can estimate the covariance matrix recursively, as

R, = (1= a)Rey 4 aqr(r(1) (37)
Since we need to propagate the inverse of Ry, we use the Sherman-Morrison formula [46]. to obtain

. R R 1 R—-!
R = ‘—l——[R,‘_‘, . LU )» L = T (38)
| —ay" L= o[t = e (OR e(1)]

with R(, "= 3T where 5 is a large positive number and o, controls the learning rate for second-order
statisties.

To compute the weight vector, we also need the cumulant-based estimate of th- source steering,
vector €. We can estiiate it recursively as

() = (1= anifdt = 1)+ a [ lrd O ety = 2pthqt) = oMit)r() (39)
with the auxilary processes defined as
PLOY = 10— adpll — 1)+ aglr(D]
gir) = Ol = agtt = 1)+ aqr (O
el) = (0= ade(t = )+ ayr(t)

A = (1 = aqpelt = 1) 4 agr (D)

The auxiliary processes ave required in order to implewent the cross-correlation terms in (11}, The
initial values for the auxilary processes can be set 1o zero. Different learning rates arve provided
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to emphasize the fact that higher-order statistics require louger periods tu acquire the required
information.
We can perform adaptive beamforming by computing the weight vector at each time as

w(t) =R:'e(t) (40)

and obtain the array output, as
gty = wite(r). (41)

Adaptive versions of UM, and ' inethods will appear in a later publication.

3.6 Simulations

In this section we present various experiments to illustrate the performance of cumulant-based
beamforming. In all of the experiments we employed a uniformly spaced linear array, rather than an
arbitrary geometry. This is done for two reasons: Covariaunce-based techniques are mainly designed
for this type of array structure. e.g.. the spatial smoothing algorithm [4x-49.61-62.66.74.75], so that
it will be possible to compare both previous and future work with our current results. In addition,
allowing a sufficient number of multipath ravs. it is possible to represent any arbitrary steering
vector by the linear array, since the steering vectors of the uniformly spaced isotropic linear array
exhibit Vandermonde structure, resulting in linearly independeni vectors for different DOA’s. In
all batch type of experiments, the record length is 1000 snapshots and the array has 10 isotropic
elements with uniform half-wavelength spacing.

3.6.1 Experiment 1: Desired Signal in White-Noise

In this experiment. we employ the lincar array described above for optimum reception of a BPSK
signal. which is expected to arrive from broadside in the presence of temporally and spatially white,
equal power. circularly symmetric sensor noise: however. the desired source illuminates the array
from 57 broadside.

Our first MVDR beamformer. MVDR,. looks tn broadside. i.e.. a mismatch condition. Our
second MVDR beamformer. MVDR,. uses exact knowledge of DOA of the desired signal. We also
employ the cumulant-based beamformer of Section 3.2, CUM,. and the improved cumulant-based
beatnformer CUN, of Section 3.3.1. We investigate the performance of these processors for the
following two elemental SNK levels: 20 dB for a strong signal and 0 dB for a weak signal. Note
that the white-noise gain of any processor is limited to 10 dB by the number of sensors [15].

The beampattern responses (18). and white-noise gains of these beamformers are presented
in Fig. 9 for SNR=20 dB. All responses are normalized to have a maximum value of 0 dB. For
cotnparison purposes. the optimuin beamformer respouse. calculated by using true statistics in {16).
is preseuted as the dashed curves. Observe that due to the mismatch condition. MVDR nulls the
desired sigual. More interestingly. the MVDR, processor that utilizes the true DOA information
does ot improve the SNR. due to the mismatel arising from the use of a sample-data covariance
matrix. The cumulant-based processors. CUMy and CUM,. vield excellent performance without
any knowledge of source DOA. It is very dnportant to observe that the performance of cumaulant-
bascd processors are bebler than that of the MIVDER with cractly known look-dircetion.

We perfortued 100 Monte-Carlo runs to investigate the performance i a better way. The results
are given in Table 1.
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Figure 11: Power of cumulant-based beamforming: (a) received signal at the reference ele-
ment at SNR = 0 dB. (b) output of CUNM,; processor.

From these results. it is clear that cumulant-based processors are superior and the extra compu-
tation involved in C UM, reduces the variations. Note. also, that variations in the MVDR processors
are significantly larger than those of the cumulant-based counterparts. This agrees with the previ-
ous remarks about the sensitivity of MVDR processing to experimental conditions in a high-SNR
environment.

Table 1: Results from 100 Monte-Carlo Runs for Experiment 1

White-Noise Gain (dB)

Processor { SNR=20dB SNR=0dB
Mean Std. | Mean Std.
MVDR, S3RA30 1 179 0.413 | 0.28%]
MVDR, 0.179 1 1.360 | 9.5%3 ] 0.131
CUM, 99511 0.015 1 9.058 1 0.359
CUM, 9.990 | 0.003 | 9.959 ¢ 0.014

We performed the same experiment tor 0 dB SNR condition. Figure 10 illustrates the beam-
pattern responses and white-noise gains of the processors. Monte-Carlo results are also given in
Table 1. In this low-SNR condition. MV DR results are expected to improve since the mismatch
conditions for the desired signal will he masked by the presence of white noise of comparable power,
as explained in Section 3.3. MVDR, processor does not offer a significant gain due to the persistent
mismatch condition. but MVDR, vields a near-optumum resalt. since presence of higher-les 1 noise

masks the mismateh due to the use of a sample-covariance matrix. The performance of CUM,
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Figare 12: Beamforming in the presence of spatially colored noise: {a) Spatial Power Spectral
Density of noise. {(b) Beampattern of CUM., processor. The optimum pattern is illustrated

in dashed lines for comparison purposes.

processor is slightly below than that of MIVDR,; and exhibits more variations. This is due to the
inefficient use of the array data. since a high-lcvel of noise corrupts the cumulant estimates and
with CUM,; there are no precautions to combat these errors. As expected, CUM; overcomes this
problem by using SV D. Results in Table 1 indicate that C UM, achieves the best performance with
minimuin variations.

Finallv. to demorstrate the power of cumulant-based beamforming. we illustrate the received
signal and the output of CUM, processor for SNR=0 dB case in Fig. 11. It is clear that CUM; is
capable of sufficient noise rejection for performing correct decisions.

3.6.2 Experiment 2: Spatially Colored Noise and Multipath Propagation

In this experiment. we investigate the performance of the proposed approach in the presence of
spatially colored noise. We employ the linear arra, ot the previous experiment. We assume that the
noise field is created by a set of point sources distributed syiumetrically about the broadside of the
linear array. As suggested in [67]. this source structure is typical when the noise field is spherically
or cvlindrically isotropic. In this case. the noise covariance matrix is svmmetric-Toeplitz. In our
experitnent, we uce the following stiacture for the covariance rrutrix of undesired components.

R,(i.j)=0x " (42)

The spatial power spectrim of undesired components is illustrated in Fig. 12a. It is clear
that most of the noise leaks into the svstem from broadside. The desired signal illuminates the
arrayv from broadside. with an SNR of 10 dB. To illustrate the optimum combining prope iy of our
approach. we iinplanted an exact replica of the desired signal illuiminating the array from 60V, where
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Lable 20 Results from 100 Monte-Carlo Runs for Fxperiment 2

[ Frocessor | SNR L dB)

]
1

|

1 Mean Std
L CUM [ 236100017
DOCUNM, | 23615 1 0615

noise power s relatively less when compared 1o that from broadside. The beampattern of CUM,
processor i~ eiven in e 12h, For comparison purposes. we present the response of the optimum
beartorner based onoee 0 sratistical information, as a dashed curve. The maximum-possible SNR
at the output s 9 a B for this scenario. It is clear that the response of (LM, is almost identical
to that of the optinnon beamtormer: hoth processors emphasize the signal illuminating the array

froms b st Hie notse contribution is less fu this region. We performed 100 Monte-Carlo runs

for thas scenarion ad the resudts are presented i Table 20 It is clear that both cumulant-based
processors perfornn eqially wells The reason for this phenomenon is the presence of the multipath
fromn 60 throueh o fow noise backeround that virtually increases the effective SNR. which. in
Parn, alleviates the etfecrs of estimation errors. Note that the peak of the beampattern is slightly
safred from 60 o order 1o receive Jeas interference. Similar beliavior is observed in covariance-
ba~ed direenion-of-arrival estimation in the presence of colored noise resulting in biased estimates

ol parameters,

3.6.3 Experiment 3: Effects of Robustness Constraint

Lo this experiment s we illustrate the effects of the robustuess constraint of Section 3.3.3.0n a CUM,
processor i the presence of white noise. We enploy the same array as in the previous experiments.
We ennploy CUNM L <hiee this processor uses the data inefficientlv, and requires a robust approach. In
onr experiinent. we consider the situation with SNR=0 dB. Fignre 13 illustrates the beampatterns
of CUNL, processor for several SNR, vaines. It is clear from the results that. as the perturbation
mcyeases. the patterns matceh better since the mismateh due to estimation errors in the steering
vector estitnate are tasked by the presence of virtual increased level of noise. This method should
be sed sparingly in the presence of Jammers. becanse virtually increasing the noise level results in

divertineg the capabilisy of the arvay from nulling the directional interference.

3.6.4 Experiment 4: Multiple Interferers

In this caperimen . we consider the problem of beamforming in o wultipath environment in the
presence of maltiple Jammers. We employ the same array as v the previous expernments. The
stetin of tnterest origiates from o BPSK commmication ~ource.and it is expected from broadside:
Bowever, duc to multipath effect < mnltiple delayed and shifved replicas are received. There are two
e soand ane is subject to mmdtipathc as wells Table 30 simmarizes the signal stracture.

Note that there e 1O wavetvonts dhoninating the arrayv and it s not possible to estimate then
DON S with any exi-tine high resolntion ethod: ences sicnal-COPY aleorithims {58) can not be

a-cd cven with perfecr hnowledee of the array nonatold,
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Figure 13: Beampattern of CUM, processor for varving vitiaal SNR: {a) 0 dB. (b) -6 dB,
(¢) -10 dB. (d) -20 dB. The optimum pattern is illustrated in dashed lines for comparison

PUTPOsesS,

Diie to presence of colierent wavefrouts. second-order statistics are not spatially stationary along
the arrav: hencel it is not meaningfnl 1o define SINR at an array element. Instead, we compute the
SINR at the ontput of the optimal processor by emploving true statistics. The maximum possible
SINR, is found from (34) to be 12,677 dB. From Table 1. we observe that CUM, performs very
well under these severe conditions. Performance of CUMy is effected by strong interferers since this
processor does not utilize all of the available information. Finallv. we observe that MVDR with
correct look-direction cancels the desired signal due to colierence. Note that CUM; exhibits less
variations than other processors.

To gain more insight into the operation of the processors, we illustrate the beampatterns for
MVDR and CUM, i Fieo T We focus on the region where the wavefronts are received by the array.
It is observed that the NMIVDR processor does not pall the jammer fronr -- 17, sinee it maintains the
look direction constraint for 07 and tries to minimize the ontput powey by destructively combining,
the coherent wavefront~. Ou the ather hand, CUM, is blind to Ganssian interferers, and, as
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Table 3: Signal structure for Experiment 4

Source Power (dB) | Multipath Coeff. | DOA

(0.0.-0.5) ~10°

(0.9895.-0.0311) —2¢

(1.0.0.0) 0°

BPSK 10 (-0.6472,-0.4702) 6°

(-10.8,0.0) g°

(0.1414,0.1414) 11°

(0.0462.0.0191) 1R¢

JAMMER, 10 (1.0,0.0) 269

(0.5657.0.5657) 32°

JAMMER, 10 (1.0,0.0) -1v
NOISE 0 -
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Fignre 14 Beampatterns and arrav gains of processors: (a) MVDR with correct look direc-

tion. (b)) CUN,. The optinvun patternas illustrated in dashed lines for comparison purposes.
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Table 1: Results from 100 Monte-Carlo Runs for Experiment 4

Processor SINR, (dB)

Mean Std
MVDR | -28.424 | 1.105
UM, 1110 | 2.118
CUM, 10.290 | 0.746

C 11.879 ] 0.627 |

Experiment 2. it estimates the generalized steering vector of the desired signal and combines the
wavefronts to enhance SINR at the output. CUM, puts a null on the jammer from —17, destructively
comtbines the wavefronts from the first jammer by weight-phasing rather than null-steering. and
reinforees the wavefronts from the desived source.

Finally. we implement the €% beamformer suggested in Section 3.3.2: we first estimate the
steering vector as done for CUM,, but then further project it into the subspace spanned by the
principal eigenvectors of the sample covariance matrix. We use the resultant vector as the estimate
of the desired signal steering vector. aud coustruct an MVDR beamformer based on it. The
performance of the resultant processor is demonstrated in Table 4.

We observe that by combiniug comulants with covariance informatiou. we obtain the best
results.,

3.6.5 Experiment 5: Adaptive Processing

[n this section. we demonstrate the results from the adaptive version of CUM,; approach as described
in Section 3.5. We employv the 10 element uniform linear array of previous experiments. The initial
pattern of the beamformer is designed 1o be isotropic. by letting ¢(0) = [1.0.....0]7. Desired signal
illuminates the arrav from broadside with SNR=10 dB. A jammer with power equal to that of the
desired source is present at 307, Note that there is no nonstationarity involved in this experiment;
our aimn is to demmonstrate the evolution of the beamforming process and indicate the data lengths
required for cumulant and covariance estimation. Tracking properties will he included in our future
work. including comparisoas with adaptive versions of CUNy and C? processors.

Figure 15 illustrates the beampattern of the adaptive CUNy processor as time evolves. After
[00 snapshiots. the beampatteorn is still close to isotropic. At 300 snapshots. covariance matrix
estitnate ts iuproved, indicating the presence of desired signal from broadside. At this time point.
the conndant-hased steering vector estimate lias not matured. so it can not prevent the desired
signal from being cancelled.  After 500 snapshots. cumulant estiimates get better, aud there is a
tendency to cancel the interference rather than the desired signal. Finally, after 700 snapshots the

processor removes the iterference by null steering,.

3.6.6 Experiment 6: Effects of Data Length

fu thas section. we employ the inear aevay of Experinent 10 with the siane noise conditions. and
vary the data leneth to observe the hebavior of the beamformers CUNM D CUM,0 MVDR, and

261




‘dgﬁii'éd' .
:signal -

Figure 15: Beampattern of the adaptive CUM; processor as a function of time: desired
signal is from broadside and the jammer is from 30° as indicated. (a) t=100. (b) t=300, (c)
t=500. (d) t=700.
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MVDR,. Figure {6 demounstrates the variation of white-noise gain of the processors with data
length. for 0dB and 20dB SNR levels. Each point on the plots is obtained by averaging the results
from 50 Moute-Carlo stimulations.

From Fig. 16a it is clear that CUM, outperforms all the processors. including MVDR; which
utilizes the correct look direction for all data lengths. Furthermore, small sample properties of
CUM, are quite hmpressive, motivating further research for developing its adaptive version. Low
SNR masks the mismatch in MVDR; due to the use of sample covariance matrix; hence, as can be
seen trom Fig. 16a. CUMy is inferior to MVDR,.

Figures 16b and 16c. indicate the effect of higher SNR on performance. CUM; and CUM,
perform almost identical for all data lengths. Their gain is larger than 9 dB even for less than 50
snapshots. MVDR; cau not recover in this experiment since the mismatch results in severe signal
cancellation. We do not include the response of MVDR,, because its performance drifts around
-35 dB.

Thesc results indicate that our approach has very promising smail semple behavior that deserves
morc research. This will be a topic of another paper.

3.7 Conclusions

We have bresented optimuin beamforming algorithms for non-Gaussian signals, which are based
on fourth-order cumulants of the data received by the array. Our proposed methods do not make
aily assuniption about the sensor locations and characteristics, i.e., they are blind beamforming
methods. Cumulant-based estimation is emploved to identify the steering vector of the signal
of interest and MVDR beamforming using this estimate is used to remove Gaussian interference
components. We have suggested several approaches to combat effects of estimation errors. We have
also implemented a recursive version of the method to enable real-time beaniforming. Simulation
experiments demonstrate the performance of our approaches in a wide variety of situations. It is
llwportant to emphasize that the proposed methods outperform an MVDR beamformer with an
exactly known look-direction.

tn our future work. we shall address the problem of optimum beamforming in the presen